Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Biol ; 19(11): e3001255, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748544

RESUMO

The discovery of human obesity-associated genes can reveal new mechanisms to target for weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic variants can identify novel obesity-associated genes. However, establishing a functional relationship between these candidate genes and adiposity remains a significant challenge. We uncovered a large number of rare homozygous gene variants by exome sequencing of severely obese children, including those from consanguineous families. By assessing the function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a transmembrane protein upstream of the Hippo signalling pathway. We found that 3 further members of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in larger human cohorts revealed rare variants in TAOK2 associated with human obesity. Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our approach in predicting novel human obesity genes and signalling pathways and their site of action.


Assuntos
Drosophila melanogaster/genética , Estudos de Associação Genética , Testes Genéticos , Obesidade/genética , Idade de Início , Animais , Estudos de Casos e Controles , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Homozigoto , Humanos , Masculino , Mutação/genética , Linhagem , Transdução de Sinais/genética
2.
J Am Chem Soc ; 142(3): 1227-1235, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31816235

RESUMO

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Catálise , Clostridium/enzimologia , Oxirredução , Difração de Raios X
3.
Dev Cell ; 28(6): 685-96, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24631403

RESUMO

The ability to reprogram differentiated cells into a pluripotent state has revealed that the differentiated state is plastic and reversible. It is evident, therefore, that mechanisms must be in place to maintain cells in a differentiated state. Transcription factors that specify neuronal characteristics have been well studied, but less is known about the mechanisms that prevent neurons from dedifferentiating to a multipotent, stem cell-like state. Here, we identify Lola as a transcription factor that is required to maintain neurons in a differentiated state. We show that Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and begin to divide, forming tumors. Thus, neurons rather than stem cells or intermediate progenitors are the tumor-initiating cells in lola mutants.


Assuntos
Neoplasias Encefálicas/patologia , Diferenciação Celular , Proteínas de Drosophila/fisiologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/patologia , Neurônios/citologia , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Imunoenzimáticas , Hibridização In Situ , Mitose/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
Dev Cell ; 26(1): 101-12, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792147

RESUMO

Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed "TaDa," a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transcribed genes in a cell-type-specific manner with considerable temporal precision, enabling the identification of differential gene expression between neuroblasts and the neuroepithelial cells from which they derive. We profile the genome-wide binding of RNA polymerase II in these adjacent, clonally related stem cells within intact Drosophila brains. Our data reveal expression of specific metabolic genes in neuroepithelial cells, but not in neuroblasts, and highlight gene regulatory networks that may pattern neural stem cell fates.


Assuntos
Encéfalo/metabolismo , Cromatina/metabolismo , Perfilação da Expressão Gênica/métodos , Células-Tronco Neurais/enzimologia , RNA Polimerase II/análise , Animais , Encéfalo/citologia , Separação Celular , Cromatina/genética , Metilação de DNA , Drosophila/enzimologia , Drosophila/genética , Redes Reguladoras de Genes , Genes de Insetos , Células-Tronco Neurais/citologia , Células Neuroepiteliais/citologia , Células Neuroepiteliais/enzimologia , Ligação Proteica , RNA Polimerase II/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transcrição Gênica
5.
Development ; 133(16): 3063-73, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16831834

RESUMO

Fes/Fer non-receptor tyrosine kinases regulate cell adhesion and cytoskeletal reorganisation through the modification of adherens junctions. Unregulated Fes/Fer kinase activity has been shown to lead to tumours in vivo. Here, we show that Drosophila Fer localises to adherens junctions in the dorsal epidermis and regulates a major morphological event, dorsal closure. Mutations in Src42A cause defects in dorsal closure similar to those seen in dfer mutant embryos. Furthermore, Src42A mutations enhance the dfer mutant phenotype, suggesting that Src42A and DFer act in the same cellular process. We show that DFer is required for the formation of the actin cable in leading edge cells and for normal rates of dorsal closure. We have isolated a gain-of-function mutation in dfer (dfergof) that expresses an N-terminally fused form of the protein, similar to oncogenic forms of vertebrate Fer. dfergof blocks dorsal closure and causes axon misrouting. We find that in dfer loss-of-function mutants beta-catenin is hypophosphorylated, whereas in dfergof beta-catenin is hyperphosphorylated. Phosphorylated beta-catenin is removed from adherens junctions and degraded, thus implicating DFer in the regulation of adherens junctions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Proteínas do Olho/metabolismo , Morfogênese , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Junções Aderentes/enzimologia , Animais , Drosophila/enzimologia , Drosophila/genética , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Embrião não Mamífero/enzimologia , Epiderme/embriologia , Epiderme/enzimologia , Proteínas do Olho/análise , Proteínas do Olho/genética , Genoma de Inseto , Morfogênese/genética , Mutação , Fosforilação , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Tirosina/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA