Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 131(11): 2463-2475, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30136108

RESUMO

KEY MESSAGE: CRISPR-Cas9-based genome editing and EMS mutagenesis revealed inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. The TaGW2 gene homoeologues have been reported to be negative regulators of grain size (GS) and thousand grain weight (TGW) in wheat. However, the contribution of each homoeologue to trait variation among different wheat cultivars is not well documented. We used the CRISPR-Cas9 system and TILLING to mutagenize each homoeologous gene copy in cultivars Bobwhite and Paragon, respectively. Plants carrying single-copy nonsense mutations in different genomes showed different levels of GS/TGW increase, with TGW increasing by an average of 5.5% (edited lines) and 5.3% (TILLING mutants). In any combination, the double homoeologue mutants showed higher phenotypic effects than the respective single-genome mutants. The double mutants had on average 12.1% (edited) and 10.5% (TILLING) higher TGW with respect to wild-type lines. The highest increase in GS and TGW was shown for triple mutants of both cultivars, with increases in 16.3% (edited) and 20.7% (TILLING) in TGW. The additive effects of the TaGW2 homoeologues were also demonstrated by the negative correlation between the functional gene copy number and GS/TGW in Bobwhite mutants and an F2 population. The highest single-genome increases in GS and TGW in Paragon and Bobwhite were obtained by mutations in the B and D genomes, respectively. These inter-cultivar differences in the phenotypic effects between the TaGW2 gene homoeologues coincide with inter-cultivar differences in the homoeologue expression levels. These results indicate that GS/TGW variation in wheat can be modulated by the dosage of homoeologous genes with inter-cultivar differences in the magnitude of the individual homoeologue effects.


Assuntos
Edição de Genes , Mutagênese , Sementes/crescimento & desenvolvimento , Triticum/genética , Sistemas CRISPR-Cas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Sementes/genética , Triticum/crescimento & desenvolvimento
2.
Front Plant Sci ; 12: 716955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484280

RESUMO

The introgression from wild relatives have a great potential to broaden the availability of beneficial allelic diversity for crop improvement in breeding programs. Here, we assessed the impact of the introgression from 21 diverse accessions of Aegilops tauschii, the diploid ancestor of the wheat D genome, into 6 hard red winter wheat cultivars on yield and yield component traits. We used 5.2 million imputed D genome SNPs identified by the whole-genome sequencing of parental lines and the sequence-based genotyping of introgression population, including 351 BC1F3:5 lines. Phenotyping data collected from the irrigated and non-irrigated field trials revealed that up to 23% of the introgression lines (ILs) produce more grain than the parents and check cultivars. Based on 16 yield stability statistics, the yield of 12 ILs (3.4%) was stable across treatments, years, and locations; 5 of these lines were also high yielding lines, producing 9.8% more grain than the average yield of check cultivars. The most significant SNP- and haplotype-trait associations were identified on chromosome arms 2DS and 6DL for the spikelet number per spike (SNS), on chromosome arms 2DS, 3DS, 5DS, and 7DS for grain length (GL) and on chromosome arms 1DL, 2DS, 6DL, and 7DS for grain width (GW). The introgression of haplotypes from A. tauschii parents was associated with an increase in SNS, which was positively correlated with a heading date (HD), whereas the haplotypes from hexaploid wheat parents were associated with an increase in GW. We show that the haplotypes on 2DS associated with an increase in the spikelet number and HD are linked with multiple introgressed alleles of Ppd-D1 identified by the whole-genome sequencing of A. tauschii parents. Meanwhile, some introgressed haplotypes exhibited significant pleiotropic effects with the direction of effects on the yield component traits being largely consistent with the previously reported trade-offs, there were haplotype combinations associated with the positive trends in yield. The characterized repertoire of the introgressed haplotypes derived from A. tauschii accessions with the combined positive effects on yield and yield component traits in elite germplasm provides a valuable source of alleles for improving the productivity of winter wheat by optimizing the contribution of component traits to yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA