Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hepatology ; 61(4): 1370-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25421237

RESUMO

UNLABELLED: Induced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) could provide a powerful tool for studying the mechanisms underlying human liver development and disease, testing the efficacy and safety of pharmaceuticals across different patients (i.e., personalized medicine), and enabling cell-based therapies in the clinic. However, current in vitro protocols that rely upon growth factors and extracellular matrices (ECMs) alone yield iHeps with low levels of liver functions relative to adult primary human hepatocytes (PHHs). Moreover, these low hepatic functions in iHeps are difficult to maintain for prolonged times (weeks to months) in culture. Here, we engineered a micropatterned coculture (iMPCC) platform in a multiwell format that, in contrast to conventional confluent cultures, significantly enhanced the functional maturation and longevity of iHeps in culture for at least 4 weeks in vitro when benchmarked against multiple donors of PHHs. In particular, iHeps were micropatterned onto collagen-coated domains of empirically optimized dimensions, surrounded by 3T3-J2 murine embryonic fibroblasts, and then sandwiched with a thin layer of ECM gel (Matrigel). We assessed iHep maturity by global gene expression profiles, hepatic polarity, secretion of albumin and urea, basal cytochrome P450 (CYP450) activities, phase II conjugation, drug-mediated CYP450 induction, and drug-induced hepatotoxicity. CONCLUSION: Controlling both homotypic interactions between iHeps and heterotypic interactions with stromal fibroblasts significantly matures iHep functions and maintains them for several weeks in culture. In the future, iMPCCs could prove useful for drug screening, studying molecular mechanisms underlying iHep differentiation, modeling liver diseases, and integration into human-on-a-chip systems being designed to assess multiorgan responses to compounds.


Assuntos
Comunicação Celular , Hepatócitos/fisiologia , Células-Tronco Pluripotentes Induzidas , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Humanos , Fatores de Tempo
2.
Adv Mater ; 36(14): e2312226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178647

RESUMO

Many cell types require direct cell-cell interactions for differentiation and function; yet, this can be challenging to incorporate into 3-dimensional (3D) structures for the engineering of tissues. Here, a new approach is introduced that combines aggregates of cells (spheroids) with similarly-sized hydrogel particles (microgels) to form granular composites that are injectable, undergo interparticle crosslinking via light for initial stabilization, permit cell-cell contacts for cell signaling, and allow spheroid fusion and growth. One area where this is important is in cartilage tissue engineering, as cell-cell contacts are crucial to chondrogenesis and are missing in many tissue engineering approaches. To address this, granular composites are developed from adult porcine mesenchymal stromal cell (MSC) spheroids and hyaluronic acid microgels and simulations and experimental analyses are used to establish the importance of initial MSC spheroid to microgel volume ratios to balance mechanical support with tissue growth. Long-term chondrogenic cultures of granular composites produce engineered cartilage tissue with extensive matrix deposition and mechanical properties within the range of cartilage, as well as integration with native tissue. Altogether, a new strategy of injectable granular composites is developed that leverages the benefits of cell-cell interactions through spheroids with the mechanical stabilization afforded with engineered hydrogels.


Assuntos
Microgéis , Engenharia Tecidual , Animais , Suínos , Engenharia Tecidual/métodos , Esferoides Celulares , Cartilagem , Hidrogéis/química , Condrogênese
3.
Adv Healthc Mater ; 13(16): e2303167, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400658

RESUMO

Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.


Assuntos
Materiais Biomiméticos , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidrogéis/química , Engenharia Tecidual/métodos , Materiais Biomiméticos/química , Animais , Matriz Extracelular/química , Medicina Regenerativa/métodos
4.
Science ; 385(6708): 566-572, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088628

RESUMO

Incorporation of polymer chain entanglements within a single network can synergistically improve stiffness and toughness, yet attaining such dense entanglements through vat photopolymerization additive manufacturing [e.g., digital light processing (DLP)] remains elusive. We report a facile strategy that combines light and dark polymerization to allow constituent polymer chains to densely entangle as they form within printed structures. This generalizable approach reaches high monomer conversion at room temperature without the need for additional stimuli, such as light or heat after printing, and enables additive manufacturing of highly entangled hydrogels and elastomers that exhibit fourfold- to sevenfold-higher extension energies in comparison to that of traditional DLP. We used this method to print high-resolution and multimaterial structures with features such as spatially programmed adhesion to wet tissues.

5.
Adv Mater ; 36(34): e2309026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38243918

RESUMO

Volumetric additive manufacturing (VAM) is an emerging layerless method for the rapid processing of reactive resins into 3D structures, where printing is much faster (seconds) than other lithography and direct ink writing methods (minutes to hours). As a vial of resin rotates in the VAM process, patterned light exposure defines a 3D object and then resin that has not undergone gelation can be washed away. Despite the promise of VAM, there are challenges with the printing of soft hydrogel materials from non-viscous precursors, including multi-material constructs. To address this, sacrificial gelatin is used to modulate resin viscosity to support the cytocompatible VAM printing of macromers based on poly(ethylene glycol) (PEG), hyaluronic acid (HA), and polyacrylamide (PA). After printing, gelatin is removed by washing at an elevated temperature. To print multi-material constructs, the gelatin-containing resin is used as a shear-yielding suspension bath (including HA to further modulate bath properties) where ink can be extruded into the bath to define a multi-material resin that can then be processed with VAM into a defined object. Multi-material constructs of methacrylated HA (MeHA) and gelatin methacrylamide (GelMA) are printed (as proof-of-concept) with encapsulated mesenchymal stromal cells (MSCs), where the local hydrogel properties guide cell spreading behavior with culture.

6.
Nat Commun ; 15(1): 2766, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553465

RESUMO

Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration.


Assuntos
Matriz Extracelular , Hidrogéis , Hidrogéis/química , Movimento Celular , Matriz Extracelular/metabolismo , Esferoides Celulares , Biopolímeros/metabolismo
7.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37808836

RESUMO

Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or may instead utilize existing ECM microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3D migration, few have recapitulated these natural migration paths. Here, we developed a biopolymer-based (i.e., gelatin and hyaluronic acid) bicontinuous hydrogel system formed through controlled solution immiscibility whose continuous subdomains and high micro-interfacial surface area enabled rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior was mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which was shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a new design that leverages important local interfaces to guide rapid cell migration.

8.
Adv Mater ; : e2211209, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715698

RESUMO

While many hydrogels are elastic networks crosslinked by covalent bonds, viscoelastic hydrogels with adaptable crosslinks are increasingly being developed to better recapitulate time and position-dependent processes found in many tissues. In this work, 1,2-dithiolanes are presented as dynamic covalent photocrosslinkers of hydrogels, resulting in disulfide bonds throughout the hydrogel that respond to multiple stimuli. Using lipoic acid as a model dithiolane, disulfide crosslinks are formed under physiological conditions, enabling cell encapsulation via an initiator-free light-induced dithiolane ring-opening photopolymerization. The resulting hydrogels allow for multiple photoinduced dynamic responses including stress relaxation, stiffening, softening, and network functionalization using a single chemistry, which can be supplemented by permanent reaction with alkenes to further control network properties and connectivity using irreversible thioether crosslinks. Moreover, complementary photochemical approaches are used to achieve rapid and complete sample degradation via radical scission and post-gelation network stiffening when irradiated in the presence of reactive gel precursor. The results herein demonstrate the versatility of this material chemistry to study and direct 2D and 3D cell-material interactions. This work highlights dithiolane-based hydrogel photocrosslinking as a robust method for generating adaptable hydrogels with a range of biologically relevant mechanical and chemical properties that are varied on demand.

9.
Cell Stem Cell ; 29(5): 678-691, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413278

RESUMO

The recapitulation of complex microenvironments that regulate cell behavior during development, disease, and wound healing is key to understanding fundamental biological processes. In vitro, multicellular morphogenesis, organoid maturation, and disease modeling have traditionally been studied using either non-physiological 2D substrates or 3D biological matrices, neither of which replicate the spatiotemporal biochemical and biophysical complexity of biology. Here, we provide a guided overview of the recent advances in the programming of synthetic hydrogels that offer precise control over the spatiotemporal properties within cellular microenvironments, such as advances in the control of cell-driven remodeling, bioprinting, or user-defined manipulation of properties (e.g., via light irradiation).


Assuntos
Bioimpressão , Hidrogéis , Microambiente Celular , Hidrogéis/química , Organoides , Engenharia Tecidual , Cicatrização
10.
Adv Mater ; 34(28): e2202261, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35510317

RESUMO

The incorporation of a secondary network into traditional single-network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one-pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free-radical crosslinking of methacrylate-modified hyaluronic acid (HA) to form the primary network and ii) thiol-ene crosslinking of norbornene-modified HA with thiolated guest-host assemblies of adamantane and ß-cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof-of-concept, the IPN hydrogels are implemented as low-viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/química , Adesão Celular , Ácido Hialurônico/química , Hidrogéis/química , Polímeros/química
11.
Adv Mater ; 34(28): e2202992, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522531

RESUMO

Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human-induced pluripotent stem cell (iPSC)-derived alveolar type 2 cells (iAT2s) self-assemble into alveolospheres and propagate in Matrigel-free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2-derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC-derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão , Camundongos , Organoides/metabolismo
12.
Toxicology ; 449: 152662, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359713

RESUMO

Given significant species-specific differences in liver functions, cultures of primary human hepatocytes (PHHs) are useful for assessing drug metabolism and to mitigate the risk of drug-induced hepatotoxicity in humans. While significant advances have been made to keep PHHs highly functional for 2-4 weeks in vitro, especially upon co-culture with both liver- and non-liver-derived non-parenchymal cells (NPCs), the functional lifespan of PHHs is 200-400 days in vivo. Therefore, it is desirable to determine culture conditions that can further prolong PHHs functions in vitro for modeling chronic drug exposure, disease pathogenesis, and to provide flexibility to the end-user for staggering drug incubations across multiple culture batches. Most PHH culture platforms utilize supraphysiologic levels of glucose and insulin and bovine-derived serum when including NPCs, which can alter PHH functions. Therefore, here we developed a culture medium containing physiologic levels of glucose (5 mM), insulin (500 pM), and human serum (10 % v/v) and tested its effects on micropatterned co-cultures (MPCCs) in which PHHs are organized onto collagen domains of empirically optimized dimensions and surrounded by 3T3-J2 murine fibroblasts that express liver-like molecules and induce higher PHH functions than liver-derived NPCs. Our physiologically-inspired culture medium allowed better retention of PHH morphology, polarity, and functions (albumin and urea, cytochrome-P450 activities, and sensitivity to insulin-mediated inhibition of gluconeogenesis) for up to 10 weeks relative to the traditional medium. Finally, PHHs in the physiologic medium displayed clinically-relevant responses to prototypical drugs for hepatoxicity and cytochrome-P450 induction. Ultimately, our physiologic culture medium could find broader utility for the continued development of PHH-NPC co-cultures for drug development, investigating the effects of patient-derived sera on PHH functions and disease phenotypes, and for use in cell-based therapies.


Assuntos
Técnicas de Cocultura/métodos , Meios de Cultura/farmacologia , Glucose/administração & dosagem , Hepatócitos/fisiologia , Insulina/administração & dosagem , Albumina Sérica Humana/administração & dosagem , Adulto , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade
13.
Biofabrication ; 13(4)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34507304

RESUMO

The extracellular matrix (ECM) is composed of biochemical and biophysical cues that control cell behaviors and bulk mechanical properties. For example, anisotropy of the ECM and cell alignment are essential in the directional properties of tissues such as myocardium, tendon, and the knee meniscus. Technologies are needed to introduce anisotropic behavior into biomaterial constructs that can be used for the engineering of tissues as models and towards translational therapies. To address this, we developed an approach to align hydrogel fibers within cell-degradable bioink filaments with extrusion printing, where shear stresses during printing align fibers and photocrosslinking stabilizes the fiber orientation. Suspensions of hydrogel fibers were produced through the mechanical fragmentation of electrospun scaffolds of norbornene-modified hyaluronic acid, which were then encapsulated with meniscal fibrochondrocytes, mesenchymal stromal cells, or cardiac fibroblasts within gelatin-methacrylamide bioinks during extrusion printing into agarose suspension baths. Bioprinting parameters such as the needle diameter and the bioink flow rate influenced shear profiles, whereas the suspension bath properties and needle translation speed influenced filament diameters and uniformity. When optimized, filaments were formed with high levels of fiber alignment, which resulted in directional cell spreading during culture over one week. Controls that included bioprinted filaments without fibers or non-printed hydrogels of the same compositions either with or without fibers resulted in random cell spreading during culture. Further, constructs were printed with variable fiber and resulting cell alignment by varying print direction or using multi-material printing with and without fibers. This biofabrication technology advances our ability to fabricate constructs containing aligned cells towards tissue repair and the development of physiological tissue models.


Assuntos
Bioimpressão , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
14.
Nat Commun ; 12(1): 753, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531489

RESUMO

Cellular models are needed to study human development and disease in vitro, and to screen drugs for toxicity and efficacy. Current approaches are limited in the engineering of functional tissue models with requisite cell densities and heterogeneity to appropriately model cell and tissue behaviors. Here, we develop a bioprinting approach to transfer spheroids into self-healing support hydrogels at high resolution, which enables their patterning and fusion into high-cell density microtissues of prescribed spatial organization. As an example application, we bioprint induced pluripotent stem cell-derived cardiac microtissue models with spatially controlled cardiomyocyte and fibroblast cell ratios to replicate the structural and functional features of scarred cardiac tissue that arise following myocardial infarction, including reduced contractility and irregular electrical activity. The bioprinted in vitro model is combined with functional readouts to probe how various pro-regenerative microRNA treatment regimes influence tissue regeneration and recovery of function as a result of cardiomyocyte proliferation. This method is useful for a range of biomedical applications, including the development of precision models to mimic diseases and the screening of drugs, particularly where high cell densities and heterogeneity are important.


Assuntos
Bioimpressão/métodos , Hidrogéis/química , Engenharia Tecidual/métodos , Engenharia Biomédica/métodos , Doenças Cardiovasculares , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Esferoides Celulares/citologia
15.
Sci Adv ; 7(46): eabi8157, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757787

RESUMO

The natural extracellular matrix (ECM) within tissues is physically contracted and remodeled by cells, allowing the collective shaping of functional tissue architectures. Synthetic materials that facilitate self-assembly similar to natural ECM are needed for cell culture, tissue engineering, and in vitro models of development and disease. To address this need, we develop fibrous hydrogel assemblies that are stabilized with photocrosslinking and display fiber density­dependent strain-responsive properties (strain stiffening and alignment). Encapsulated mesenchymal stromal cells locally contract low fiber density assemblies, resulting in macroscopic volumetric changes with increased cell densities and moduli. Because of properties such as shear-thinning and self-healing, assemblies can be processed into microtissues with aligned ECM deposition or through extrusion bioprinting and photopatterning to fabricate constructs with programmed shape changes due to cell contraction. These materials provide a synthetic approach to mimic features of natural ECM, which can now be processed for applications in biofabrication and tissue engineering.

16.
Acta Biomater ; 126: 170-182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753316

RESUMO

Focal cartilage injuries have poor intrinsic healing potential and often progress to osteoarthritis, a costly disease affecting almost a third of adults in the United States. To treat these patients, cartilage repair therapies often use cell-seeded scaffolds, which are limited by donor site morbidity, high costs, and poor efficacy. To address these limitations, we developed an electrospun cell-free fibrous hyaluronic acid (HA) scaffold that delivers factors specifically designed to enhance cartilage repair: Stromal Cell-Derived Factor-1α (SDF-1α; SDF) to increase the recruitment and infiltration of mesenchymal stem cells (MSCs) and Transforming Growth Factor-ß3 (TGF-ß3; TGF) to enhance cartilage tissue formation. Scaffolds were characterized in vitro and then deployed in a large animal model of full-thickness cartilage defect repair. The bioactivity of both factors was verified in vitro, with both SDF and TGF increasing cell migration, and TGF increasing matrix formation by MSCs. In vivo, however, scaffolds releasing SDF resulted in an inferior cartilage healing response (lower mechanics, lower ICRS II histology score) compared to scaffolds releasing TGF alone. These results highlight the importance of translation into large animal models to appropriately screen scaffolds and therapies, and will guide investigators towards alternative growth factor combinations. STATEMENT OF SIGNIFICANCE: This study addresses an area of orthopaedic medicine in which treatment options are limited and new biomaterials stand to improve patient outcomes. Those suffering from articular cartilage injuries are often destined to have early onset osteoarthritis. We have created a cell-free nanofibrous hyaluronic acid (HA) scaffold that delivers factors specifically designed to enhance cartilage repair: Stromal Cell-Derived Factor-1α (SDF-1α; SDF) to increase the recruitment and infiltration of mesenchymal stem cells (MSCs) and Transforming Growth Factor-ß3 (TGF-ß3; TGF) to enhance cartilage tissue formation. To our knowledge, this study is the first to evaluate such a bioactive scaffold in a large animal model and demonstrates the capacity for dual growth factor release.


Assuntos
Cartilagem Articular , Nanofibras , Adulto , Animais , Quimiocina CXCL12 , Condrogênese , Humanos , Ácido Hialurônico/farmacologia , Modelos Animais , Alicerces Teciduais , Fator de Crescimento Transformador beta3
17.
Toxicol Sci ; 174(2): 266-277, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31977024

RESUMO

Primary human hepatocyte (PHH) cultures have become indispensable to mitigate the risk of adverse drug reactions in human patients. In contrast to dedifferentiating monocultures, coculture with nonparenchymal cells maintains PHH functions for 2-4 weeks. However, because the functional lifespan of PHHs in vivo is 200-400 days, it is desirable to further prolong PHH functions in vitro toward modeling chronic drug exposure and disease progression. Fasting has benefits on the longevity of organisms and the health of tissues such as the liver. We hypothesized that a culturing protocol that mimics dynamic fasting/starvation could activate starvation pathways and prolong PHH functional lifetime. To mimic starvation, serum and hormones were intermittently removed from the culture medium of micropatterned cocultures (MPCCs) containing PHHs organized onto collagen domains and surrounded by 3T3-J2 murine fibroblasts. A weekly 2-day starvation optimally prolonged PHH functional lifetime for 6+ weeks in MPCCs versus a decline after 3 weeks in nonstarved controls. The 2-day starvation also enhanced the functions of PHH monocultures for 2 weeks, suggesting direct effects on PHHs. In MPCCs, starvation activated 5' adenosine monophosphate-activated protein kinase (AMPK) and restricted fibroblast overgrowth onto PHH islands, thereby maintaining hepatic polarity. The effects of starvation on MPCCs were partially recapitulated by activating AMPK using metformin or growth arresting fibroblasts via mitomycin-C. Lastly, starved MPCCs demonstrated lower false positives for drug toxicity tests and higher drug-induced cytochrome-P450 activities versus nonstarved controls even after 5 weeks. In conclusion, intermittent serum/hormone starvation extends PHH functional lifetime toward enabling clinically relevant drug screening.


Assuntos
Metabolismo Energético , Fibroblastos/metabolismo , Hepatócitos/metabolismo , Células 3T3 , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Animais , Comunicação Celular , Sobrevivência Celular , Microambiente Celular , Técnicas de Cocultura , Meios de Cultura Livres de Soro/metabolismo , Indutores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/biossíntese , Desenvolvimento de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Indução Enzimática , Feminino , Fibroblastos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hormônios/deficiência , Humanos , Masculino , Metformina/farmacologia , Camundongos , Pessoa de Meia-Idade , Fenótipo , Cultura Primária de Células , Fatores de Tempo , Testes de Toxicidade
18.
Adv Healthc Mater ; 9(8): e1901682, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32181987

RESUMO

Many pathologic conditions lead to the development of tissue scarring and fibrosis, which are characterized by the accumulation of abnormal extracellular matrix (ECM) and changes in tissue mechanical properties. Cells within fibrotic tissues are exposed to dynamic microenvironments that may promote or prolong fibrosis, which makes it difficult to treat. Biomaterials have proved indispensable to better understand how cells sense their extracellular environment and are now being employed to study fibrosis in many tissues. As mechanical testing of tissues becomes more routine and biomaterial tools become more advanced, the impact of biophysical factors in fibrosis are beginning to be understood. Herein, fibrosis from a materials perspective is reviewed, including the role and mechanical properties of ECM components, the spatiotemporal mechanical changes that occur during fibrosis, current biomaterial systems to study fibrosis, and emerging biomaterial systems and tools that can further the understanding of fibrosis initiation and progression. This review concludes by highlighting considerations in promoting wide-spread use of biomaterials for fibrosis investigations and by suggesting future in vivo studies that it is hoped will inspire the development of even more advanced biomaterial systems.


Assuntos
Materiais Biocompatíveis , Matriz Extracelular , Fibrose , Humanos
19.
Adv Mater ; 32(8): e1905719, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31851400

RESUMO

The extracellular matrix (ECM) has force-responsive (i.e., mechanochemical) properties that enable adaptation to mechanical loading through changes in fibrous network structure and interfiber bonding. Imparting such properties into synthetic fibrous materials will allow reinforcement under mechanical load, the potential for material self-adhesion, and the general mimicking of ECM. Multifiber hydrogel networks are developed through the electrospinning of multiple fibrous hydrogel populations, where fibers contain complementary chemical moieties (e.g., aldehyde and hydrazide groups) that form covalent bonds within minutes when brought into contact under mechanical load. These fiber interactions lead to microscale anisotropy, as well as increased material stiffness and plastic deformation. Macroscale structures (e.g., tubes and layered scaffolds) are fabricated from these materials through interfiber bonding and adhesion when placed into contact while maintaining a microscale fibrous architecture. The design principles for engineering plasticity described can be applied to numerous material systems to introduce unique properties, from textiles to biomedical applications.


Assuntos
Adesivos/química , Hidrogéis/química , Módulo de Elasticidade , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo
20.
Adv Healthc Mater ; 9(8): e1901228, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31867881

RESUMO

Fibrous scaffolds fabricated via electrospinning are being explored to repair injuries within dense connective tissues. However, there is still much to be understood regarding the appropriate scaffold properties that best support tissue repair. In this study, the influence of the stiffness of electrospun fibers on cell invasion into fibrous scaffolds is investigated. Specifically, soft and stiff electrospun fibrous networks are fabricated from crosslinked methacrylated hyaluronic acid (MeHA), where the stiffness is altered via the extent of MeHA crosslinking. Meniscal fibrochondrocyte (MFC) adhesion and migration into fibrous networks are investigated, where the softer MeHA fibrous networks are easily deformed and densified through cellular tractions and the stiffer MeHA fibrous networks support ≈50% greater MFC invasion over weeks when placed adjacent to meniscal tissue. When the scaffolds are sandwiched between meniscal tissues and implanted subcutaneously, the stiffer MeHA fibrous networks again support enhanced cellular invasion and greater collagen deposition after 4 weeks when compared to the softer MeHA fibrous networks. These results indicate that the mechanics and deformability of fibrous networks likely alter cellular interactions and invasion, providing an important design parameter toward the engineering of scaffolds for tissue repair.


Assuntos
Menisco , Alicerces Teciduais , Movimento Celular , Colágeno , Hidrogéis , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA