Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 141(6): 1080-7, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20550940

RESUMO

A recent report proposed a function of the ubiquitin conjugation factors Rad6 and Rad18 comparable to the bacterial SOS response, controlling damage-induced transcriptional activation and contributing to checkpoint signaling. The relevant ubiquitylation target was identified as budding yeast Rad17, a subunit of the PCNA-like 9-1-1 checkpoint clamp. We report here that in fact all three subunits of the 9-1-1 complex are ubiquitylated. However, in contrast to previous results, we found modification of Rad17 to be independent of DNA damage, the Rad6-Rad18 complex, the putative acceptor site (lysine 197), and loading of the complex onto DNA. Consistently, we were unable to observe enhanced damage sensitivity or defects in checkpoint signaling in a rad17(K197R) mutant. Instead, our findings suggest that ubiquitylation of the 9-1-1 complex may be a background reaction that in some cases can mediate proteasomal degradation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Alinhamento de Sequência , Ubiquitinação
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115399

RESUMO

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Assuntos
Síndrome de Bloom/genética , DNA Cruciforme/genética , Instabilidade Genômica/genética , Alelos , Proteínas de Transporte/genética , Linhagem Celular , DNA Topoisomerases Tipo I/genética , Humanos , Mutação/genética , Ligação Proteica/genética , RecQ Helicases/genética , Recombinação Genética/genética , Solubilidade
3.
Nature ; 465(7300): 951-5, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20453836

RESUMO

Post-replication repair (PRR) is a pathway that allows cells to bypass or overcome lesions during DNA replication. In eukaryotes, damage bypass is activated by ubiquitylation of the replication clamp PCNA through components of the RAD6 pathway. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases, polyubiquitylation is required for an error-free pathway that probably involves a template switch to the undamaged sister chromatid. Both the timing of PRR events during the cell cycle and their location relative to replication forks, as well as the factors required downstream of PCNA ubiquitylation, have remained poorly characterized. Here we demonstrate that the RAD6 pathway normally operates during S phase. However, using an inducible system of DNA damage bypass in budding yeast (Saccharomyces cerevisiae), we show that the process is separable in time and space from genome replication, thus allowing direct visualization and quantification of productive PRR tracts. We found that both during and after S phase ultraviolet-radiation-induced lesions are bypassed predominantly via translesion synthesis, whereas the error-free pathway functions as a backup system. Our approach has revealed the distribution of PRR tracts in a synchronized cell population. It will allow an in-depth mechanistic analysis of how cells manage the processing of lesions to their genomes during and after replication.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Genoma/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ciclo Celular/fisiologia , Cromatina/metabolismo , Dano ao DNA/efeitos da radiação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Tempo , Enzimas de Conjugação de Ubiquitina , Raios Ultravioleta
4.
Mol Cell ; 29(5): 625-36, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18342608

RESUMO

Replicative DNA damage bypass, mediated by the ubiquitylation of the sliding clamp protein PCNA, facilitates the survival of a cell in the presence of genotoxic agents, but it can also promote genomic instability by damage-induced mutagenesis. We show here that PCNA ubiquitylation in budding yeast is activated independently of the replication-dependent S phase checkpoint but by similar conditions involving the accumulation of single-stranded DNA at stalled replication intermediates. The ssDNA-binding replication protein A (RPA), an essential complex involved in most DNA transactions, is required for damage-induced PCNA ubiquitylation. We found that RPA directly interacts with the ubiquitin ligase responsible for the modification of PCNA, Rad18, both in yeast and in mammalian cells. Association of the ligase with chromatin is detected where RPA is most abundant, and purified RPA can recruit Rad18 to ssDNA in vitro. Our results therefore implicate the RPA complex in the activation of DNA damage tolerance.


Assuntos
Dano ao DNA , DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/metabolismo , Ubiquitina/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Replicação do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética
5.
EMBO J ; 27(18): 2422-31, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18701921

RESUMO

Post-translational modification by the ubiquitin-like protein SUMO is often regulated by cellular signals that restrict the modification to appropriate situations. Nevertheless, many SUMO-specific ligases do not exhibit much target specificity, and--compared with the diversity of sumoylation substrates--their number is limited. This raises the question of how SUMO conjugation is controlled in vivo. We report here an unexpected mechanism by which sumoylation of the replication clamp protein, PCNA, from budding yeast is effectively coupled to S phase. We find that loading of PCNA onto DNA is a prerequisite for sumoylation in vivo and greatly stimulates modification in vitro. To our surprise, however, DNA binding by the ligase Siz1, responsible for PCNA sumoylation, is not strictly required. Instead, the stimulatory effect of DNA on conjugation is mainly attributable to DNA binding of PCNA itself. These findings imply a change in the properties of PCNA upon loading that enhances its capacity to be sumoylated.


Assuntos
Regulação Fúngica da Expressão Gênica , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína SUMO-1/metabolismo , Alelos , Cromatina/metabolismo , Cisteína Endopeptidases/química , DNA/química , Modelos Biológicos , Modelos Genéticos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina-Proteína Ligases/química
6.
Methods Mol Biol ; 497: 81-103, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19107412

RESUMO

Ni-NTA affinity chromatography under denaturing conditions has proven to be a powerful method for the isolation of SUMO conjugates from total cell extracts, as it minimizes deconjugation and excludes noncovalent interactions. This chapter describes the use of both His-tagged SUMO and a His-tagged target protein for the characterization of the sumoylation process in the budding yeast Saccharomyces cerevisiae. Two well-studied model substrates, the septin Cdc3 and the replication clamp protein PCNA, are used as examples, but the protocol can easily be adapted to other targets and organisms.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Técnicas de Laboratório Clínico , Clonagem Molecular/métodos , Modelos Biológicos , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/isolamento & purificação
7.
Nucleic Acids Res ; 33(18): 5878-86, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16224103

RESUMO

Tolerance to replication-blocking DNA lesions is achieved by means of ubiquitylation of PCNA, the processivity clamp for replicative DNA polymerases, by components of the RAD6 pathway. In the yeast Saccharomyces cerevisiae the ubiquitin ligase (E3) responsible for polyubiquitylation of the clamp is the RING finger protein Rad5p. Interestingly, the RING finger, responsible for the protein's E3 activity, is embedded in a conserved DNA-dependent ATPase domain common to helicases and chromatin remodeling factors of the SWI/SNF family. Here, we demonstrate that the Rad5p ATPase domain provides the basis for a function of the protein in DNA double-strand break repair via a RAD52- and Ku-independent pathway mediated by the Mre11/Rad50/Xrs2 protein complex. This activity is distinct and separable from the contribution of the RING domain to ubiquitin conjugation to PCNA. Moreover, we show that the Rad5 protein physically associates with the single-stranded DNA regions at a processed double-strand break in vivo. Our observations suggest that Rad5p is a multifunctional protein that--by means of independent enzymatic activities inherent in its RING and ATPase domains--plays a modulating role in the coordination of repair events and replication fork progression in response to various different types of DNA lesions.


Assuntos
Adenosina Trifosfatases/fisiologia , Reparo do DNA , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Dano ao DNA , DNA Helicases , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
8.
Methods Mol Biol ; 920: 543-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22941627

RESUMO

PCNA modifications by members of the ubiquitin family are associated with a range of different transactions during replication of damaged and undamaged DNA. This chapter describes detailed protocols for the detection and isolation of ubiquitin and SUMO conjugates of PCNA from total budding yeast cell lysates, using Ni-NTA affinity chromatography under denaturing conditions. We describe approaches based on the purification of PCNA itself and on the isolation of total ubiquitin or SUMO conjugates. The chapter covers the construction of the appropriate strains, methods for the detection of modified PCNA, and the use of various DNA-damaging agents as well as mutants of PCNA and relevant conjugation enzymes to examine the cellular response to replication stress.


Assuntos
Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting , Cromatografia de Afinidade , Dano ao DNA , Eletroforese em Gel de Poliacrilamida , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/química , Compostos Organometálicos/química , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Proteína SUMO-1 , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Ubiquitinação
9.
EMBO J ; 25(6): 1285-94, 2006 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-16482220

RESUMO

The repair mechanisms acting on DNA interstrand crosslinks (ICLs) in eukaryotes are poorly understood. Here, we provide evidence for a pathway of ICL processing that uses components from both nucleotide excision repair (NER) and translesion synthesis (TLS) and predominates during the G1 phase of the yeast cell cycle. Our results suggest that repair is initiated by the NER apparatus and is followed by a thwarted attempt at gap-filling by the replicative Polymerase delta, which likely stalls at the site of the remaining crosslinked oligonucleotide. This in turn leads to ubiquitination of PCNA and recruitment of the damage-tolerant Polymerase zeta that can perform TLS. The ICL repair factor Pso2 acts downstream of the incision step and is not required for Polymerase zeta activation. We show that this combination of NER and TLS is the only pathway of ICL repair available to the cell in G1 phase and is essential for viability in the presence of DNA crosslinks.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA , DNA Fúngico , Fase G1 , Saccharomyces cerevisiae/genética , Dano ao DNA , DNA Polimerase III/fisiologia , Replicação do DNA , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Endodesoxirribonucleases , Ativação Enzimática , Proteínas Nucleares/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina/metabolismo
10.
Cell Cycle ; 4(12): 1699-702, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16294012

RESUMO

The small ubiquitin-related modifier SUMO plays an important role in the maintenance of genome stability. Accordingly, DNA replication, repair and recombination factors as well as mediators of chromosome dynamics and cohesion are among its many targets. Attachment of SUMO can modulate the properties of the modified proteins by affecting localization, conformation, stability or enzymatic activity, but often its mechanism of action remains poorly defined. Recent findings demonstrate how SUMO modification of PCNA, the processivity clamp for replicative DNA polymerases, prevents unscheduled recombination during DNA replication by means of directly enhancing physical interactions with an anti-recombinogenic helicase, Srs2. This review highlights how the SUMO conjugation system exerts its effect on the replication fork and discusses the implications for ubiquitin-dependent DNA damage tolerance.


Assuntos
Replicação do DNA/genética , Recombinação Genética/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , DNA Helicases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 19(1): 123-33, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15989970

RESUMO

Posttranslational modification of proliferating cell nuclear antigen (PCNA), an essential processivity clamp for DNA polymerases, by ubiquitin and SUMO contributes to the coordination of DNA replication, damage tolerance, and mutagenesis. Whereas ubiquitination in response to DNA damage promotes the bypass of replication-blocking lesions, sumoylation during S phase is damage independent. As both modifiers target the same site on PCNA, an antagonistic action of SUMO on ubiquitin-dependent DNA damage tolerance has been proposed. We now present evidence that the apparent negative effect of SUMO on lesion bypass is not due to competition with ubiquitination but is rather mediated by the helicase Srs2p, which affects genome stability by suppressing unscheduled homologous recombination. We show that Srs2p physically interacts with sumoylated PCNA, which contributes to the recruitment of the helicase to replication forks. Our findings suggest a mechanism by which SUMO and ubiquitin cooperatively control the choice of pathway for the processing of DNA lesions during replication.


Assuntos
DNA Helicases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Imunoprecipitação da Cromatina , DNA Helicases/genética , Glutationa Transferase/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína SUMO-1/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 359(1441): 87-93, 2004 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-15065660

RESUMO

The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability. In response to ionizing radiation and other DNA-damaging agents, the RAD51 protein, which is essential for homologous recombination, relocalizes within the nucleus to form distinct foci that can be visualized by microscopy and are thought to represent sites where repair reactions take place. The formation of RAD51 foci in response to DNA damage is dependent upon BRCA2 and a series of proteins known as the RAD51 paralogues (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), indicating that the components present within foci assemble in a carefully orchestrated and ordered manner. By contrast, RAD51 foci that form spontaneously as cells undergo DNA replication at S phase occur without the need for BRCA2 or the RAD51 paralogues. It is known that BRCA2 interacts directly with RAD51 through a series of degenerative motifs known as the BRC repeats. These interactions modulate the ability of RAD51 to bind DNA. Taken together, these observations indicate that BRCA2 plays a critical role in controlling the actions of RAD51 at both the microscopic (focus formation) and molecular (DNA binding) level.


Assuntos
Proteína BRCA2/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Genética/fisiologia , Sequência de Aminoácidos , Proteína BRCA2/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Imunofluorescência , Instabilidade Genômica/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Rad51 Recombinase
13.
Hum Mol Genet ; 13(12): 1241-8, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15115758

RESUMO

Fanconi anaemia (FA) is a chromosomal instability disorder characterized by cellular sensitivity to DNA interstrand crosslinking agents and a high risk of cancer. Six of the eight proteins encoded by the known FA genes form a nuclear complex which is required for the monoubiquitination of the FANCD2 protein. FANCD2 complexes and colocalizes with BRCA1, but its presumptive role in DNA repair has not yet been clearly defined. We used yeast two-hybrid analysis to test for interaction between FANCD2 and 10 proteins involved in homologous recombination repair. FANCD2 did not interact with RAD51, the five RAD51 paralogs, RAD52, RAD54 or DMC1. However, it bound to a highly conserved C-terminal site in BRCA2 that also binds FANCG/XRCC9. FANCD2 and BRCA2 can be coimmunoprecipitated from cell extracts of both human and Chinese hamster wild-type cells, thus confirming that the interaction occurs in vivo. Formation of nuclear foci of FANCD2 was normal in the BRCA2 mutant CAPAN-1 cells, which indicates that the recruitment of FANCD2 to sites of DNA-repair is independent of wild-type BRCA2 function. FANCD2 colocalized with RAD51 in foci following treatment with mitomycin C or hydroxyurea, and colocalized very tightly with PCNA after treatment with hydroxyurea. These findings suggest that FANCD2 may have a role in the cellular response to stalled replication forks or in the repair of replication-associated double-strand breaks, irrespective of the type of primary DNA lesion.


Assuntos
Proteína BRCA2/metabolismo , Dano ao DNA , Proteínas Nucleares/metabolismo , Animais , Proteína BRCA2/genética , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cricetinae , Proteínas de Ligação a DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Humanos , Imunoprecipitação , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Rad51 Recombinase , Técnicas do Sistema de Duplo-Híbrido , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA