Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0295445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530835

RESUMO

Tomato (Solanum lycopersicum) has many epidermal cell outgrowths including conical petal cells and multiple types of trichomes. These include the anther-specific trichome mesh which holds the anthers connate. The R2R3 Myb Subgroup 9 family of transcription factors is involved in development of epidermal cell outgrowths throughout the angiosperms. No previous study has examined all members of this transcription factor family in a single species. All 7 R2R3 Myb Subgroup 9 genes were isolated from tomato. They were ectopically expressed in tobacco to assess their ability to induce epidermal cell outgrowth. Endogenous expression patterns were examined by semi-quantitative RT-PCR at different stages of floral development relative to the development of anther trichomes. We report variation in the degree of epidermal cell outgrowth produced in transgenic tobacco by each ectopically expressed gene. Based on expression profile and ectopic activity, SlMIXTA-2 is likely involved in the production of leaf trichomes. SlMIXTA-2 is expressed most strongly in the leaves, and not expressed in the floral tissue. SlMYB17-2 is the best candidate for the regulation of the anther trichome mesh. SlMYB17-2 is expressed strongly in the floral tissue and produces a clear phenotype of epidermal cell outgrowths when ectopically expressed in tobacco. Analysis of the phenotypes of transgenic plants ectopically expressing all 7 genes has revealed the different extent to which members of the same transcription factor subfamily can induce cellular outgrowth.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas/genética , Folhas de Planta/metabolismo , Tricomas/metabolismo , Nicotiana , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Filogenia
2.
Trends Plant Sci ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38036390

RESUMO

Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.

3.
Methods Mol Biol ; 2457: 457-464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349160

RESUMO

The cells which make up plant tissues remain fixed together through shared cell walls. Cell-to-cell communication principally takes place through these shared interfaces through a combination of plasmodesmata, transporters, and the apoplastic space. To better understand the capacity for intercellular communication in plant tissues, this chapter outlines a method which can be used to quantify the surface area of shared intercellular interfaces using whole mount imaging and quantitative 3D image analysis. This method allows the potential for intercellular communication as prescribed by cellular architecture to be measured at single cell resolution.


Assuntos
Plantas , Plasmodesmos , Comunicação Celular , Parede Celular/metabolismo , Plantas/metabolismo , Plasmodesmos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA