Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Nanobiotechnology ; 21(1): 235, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481565

RESUMO

Systemic administration of platinum-based drugs has obvious limitations in the treatment of advanced bladder cancer (BC) owing to lower tumor accumulation and uncontrolled release of chemotherapeutics. There is an urgent need for advanced strategies to overcome the current limitations of platinum-based chemotherapy, to achieve maximal therapeutic outcomes with reduced side effects. In this study, self-polymerized platinum (II)-polydopamine nanocomplexes (PtPDs) were tailored for efficient chemo-photoimmunotherapy of BC. PtPDs with high Pt loading content (11.3%) were degradable under the combination of a reductive tumor microenvironment and near-infrared (NIR) light irradiation, thus controlling the release of Pt ions to achieve efficient chemotherapy. In addition, polydopamine promoted stronger photothermal effects to supplement platinum-based chemotherapy. Consequently, PtPDs provided effective chemo-photothermal therapy of MB49 BC in vitro and in vivo, strengthening the immunogenic cell death (ICD) effect and robust anti-tumoral immunity response. When combined with a PD-1 checkpoint blockade, PtPD-based photochemotherapy evoked systemic immune responses that completely suppressed primary and distant tumor growth without inducing systemic toxicities. Our work provides a highly versatile approach through metal-dopamine self-polymerization for the precise delivery of metal-based chemotherapeutic drugs, and may serve as a promising nanomedicine for efficient and safe platinum-based chemotherapy for BC.


Assuntos
Nanomedicina , Neoplasias da Bexiga Urinária , Humanos , Polimerização , Indóis , Microambiente Tumoral
2.
ACS Nano ; 18(1): 470-482, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38146673

RESUMO

Targeted delivery of vaccines to the spleen remains a challenge. Inspired by the erythrophagocytotic process in the spleen, we herein report that intravenous administration of senescent erythrocyte-based vaccines profoundly alters their tropism toward splenic antigen-presenting cells (APCs) for imprinting adaptive immune responses. Compared with subcutaneous inoculation, intravenous vaccination significantly upregulated splenic complement expression in vivo and demonstrated synergistic antibody killing in vitro. Consequently, intravenous senescent erythrocyte vaccination produces potent SARS-CoV-2 antibody-neutralizing effects, with potential protective immune responses. Moreover, the proposed senescent erythrocyte can deliver antigens from resected tumors and adjuvants to splenic APCs, thereby inducing a personalized immune reaction against tumor recurrence after surgery. Hence, our findings suggest that senescent erythrocyte-based vaccines can specifically target splenic APCs and evoke adaptive immunity and complement production, broadening the tools for modulating immunity, helping to understand adaptive response mechanisms to senescent erythrocytes better, and developing improved vaccines against cancer and infectious diseases.


Assuntos
Baço , Vacinas , Vacinação , Imunidade Adaptativa , Administração Intravenosa , Eritrócitos
3.
Sci Adv ; 8(4): eabj2372, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089791

RESUMO

A therapeutic strategy that targets multiple proinflammatory factors in inflammatory bowel disease (IBD) with minimal systemic side effects would be attractive. Here, we develop a drug-free, biodegradable nanomedicine that acts against IBD by scavenging proinflammatory cell-free DNA (cfDNA) and reactive oxygen species (ROS). Polyethylenimine (PEI) was conjugated to antioxidative diselenide-bridged mesoporous organosilica nanoparticles (MONs) to formulate nanoparticles (MON-PEI) that exhibited high cfDNA binding affinity and ROS-responsive degradation. In ulcerative colitis and Crohn's disease mouse colitis models, orally administered MON-PEI accumulated preferentially in the inflamed colon and attenuated colonic and peritoneal inflammation by alleviating cfDNA- and ROS-mediated inflammatory responses, allowing a reduced dose frequency and ameliorating colitis even after delayed treatment. This work suggests a new nanomedicine strategy for IBD treatment.


Assuntos
Ácidos Nucleicos Livres , Colite , Doenças Inflamatórias Intestinais , Animais , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Polietilenoimina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
4.
Adv Sci (Weinh) ; 8(15): 2002020, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34386315

RESUMO

Biomimetic strategies are useful for designing potent vaccines. Decorating a nanoparticulate adjuvant with cell membrane fragments as the antigen-presenting source exemplifies, such as a promising strategy. For translation, a standardizable, consistent, and scalable approach for coating nanoadjuvant with the cell membrane is important. Here a turbulent mixing and self-assembly method called flash nanocomplexation (FNC) for producing cell membrane-coated nanovaccines in a scalable manner is demonstrated. The broad applicability of this FNC technique compared with bulk-sonication by using ten different core materials and multiple cell membrane types is shown. FNC-produced biomimetic nanoparticles have promising colloidal stability and narrow particle polydispersity, indicating an equal or more homogeneous coating compared to the bulk-sonication method. The potency of a nanovaccine comprised of B16-F10 cancer cell membrane decorating mesoporous silica nanoparticles loaded with the adjuvant CpG is then demonstrated. The FNC-fabricated nanovaccines when combined with anti-CTLA-4 show potency in lymph node targeting, DC antigen presentation, and T cell immune activation, leading to prophylactic and therapeutic efficacy in a melanoma mouse model. This study advances the design of a biomimetic nanovaccine enabled by a robust and versatile nanomanufacturing technique.


Assuntos
Antígeno CTLA-4/imunologia , Vacinas Anticâncer/uso terapêutico , Melanoma Experimental/prevenção & controle , Nanopartículas/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Animais , Apresentação de Antígeno/efeitos dos fármacos , Biomimética , Antígeno CTLA-4/antagonistas & inibidores , Vacinas Anticâncer/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Melanoma Experimental/imunologia , Camundongos , Linfócitos T/imunologia
5.
Biomaterials ; 271: 120716, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621894

RESUMO

Chemotherapy is a major approach for treating breast cancer patients. Paradoxically, it can also induce cancer progression. Understanding post-chemotherapy metastasis mechanism will help the development of new therapeutic strategies to ameliorate chemotherapy-induced cancer progression. In this study, we deciphered the role of HMGB1 in the regulation of TLR4-mediated epithelial to mesenchymal transitions (EMT) process on doxorubicin (Dox)-treated 4T1 breast cancer cells. Berberine (Ber), a clinically approved alkaloid has been demonstrated as an HMGB1-TLR4 axis regulator to Dox-exacerbated breast cancer metastasis in vitro and in vivo. Hypothesizing that combination of Dox and Ber would be beneficial for breast cancer chemotherapy, we engineered self-assembled nanodrug (DBNP) consisting of Dox and Ber without the aid of additional carriers. After cloaking with 4T1 cell membranes, DBNP@CM exhibited higher accumulation at tumor sites and prolonged blood circulation time in 4T1 orthotopic tumor-bearing mice than DBNP. Importantly, DBNP@CM not only effectively inhibited tumor growth with fewer side effects, but also remarkably suppressed pulmonary metastasis via blocking HMGB1-TLR4 axis. Together, our results have provided a promising combination strategy to dampen chemotherapy-exacerbated breast cancer metastasis and shed light on the development of biomimetic nanodrug for efficient and safe breast cancer chemotherapy.


Assuntos
Berberina , Neoplasias da Mama , Neoplasias Pulmonares , Nanopartículas , Animais , Biomimética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Camundongos , Camundongos Endogâmicos BALB C
6.
Sci Adv ; 6(22): eaay7148, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523983

RESUMO

Severe sepsis represents a common, expensive, and deadly health care issue with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis would help develop new therapeutic strategies against severe sepsis. In this study, we identified the crucial role of cell-free DNA (cfDNA) in the regulation of the Toll-like receptor 9-mediated proinflammatory pathway in severe sepsis progression. Hypothesizing that removing cfDNA would be beneficial for sepsis treatment, we used polyethylenimine (PEI) and synthesized PEI-functionalized, biodegradable mesoporous silica nanoparticles with different charge densities as cfDNA scavengers. These nucleic acid-binding nanoparticles (NABNs) showed superior performance compared with their nucleic acid-binding polymer counterparts on inhibition of cfDNA-induced inflammation and subsequent multiple organ injury caused by severe sepsis. Furthermore, NABNs exhibited enhanced accumulation and retention in the inflamed cecum, along with a more desirable in vivo safety profile. Together, our results revealed a key contribution of cfDNA in severe sepsis and shed a light on the development of NABN-based therapeutics for sepsis therapy, which currently remains intractable.


Assuntos
Ácidos Nucleicos Livres , Nanopartículas , Sepse , DNA/uso terapêutico , Humanos , Polietilenoimina/uso terapêutico , Sepse/etiologia , Sepse/genética
7.
Acta Biomater ; 100: 352-364, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31563690

RESUMO

Despite the rapid progress which has been made in hepatocellular carcinoma (HCC) chemotherapeutics, recurrence of liver cancer still remains a barrier to achieve satisfying prognosis. Herein, we aimed to decipher the role of berberine (BER) in chemotherapy-exacerbated HCC repopulation via developing a nanocarrier co-deliveries doxorubicin (DOX) and BER to achieve a synergic effect in HCC treatment. The underlying fact of chemotherapy that promotes HCC repopulation was firstly examined and corroborated by clinical samples and murine repopulation model. Then, hyaluronic acid (HA)-conjugated Janus nanocarrier (HA-MSN@DB) was developed to load DOX and BER simultaneously. The HCC targeting efficiency, pH-controlled drug-release and anti-cancer property of HA-MSN@DB were assessed in CD44-overexpressed HCCs and normal liver cells. Magnet resonance imaging, bio-distribution, biocompatibility, tumor and recurrence inhibition studies were performed in H22 tumor-bearing mice. BER significantly reduced doxorubicin (DOX)-triggered HCC repopulation in vitro and in vivo through inhibiting Caspase-3-iPLA2-COX-2 pathway. The delivery of HA-MSN@DB into HCCs through CD44 receptor-mediated targeting effect was demonstrated. The controlled release of DOX and BER in response to acidic tumor microenvironment was validated. Importantly, HA-MSN@DB drastically enhanced the antitumor activity of DOX and suppressed DOX-exacerbated HCC repopulation in vitro and in vivo. Furthermore, HA-MSN@DB exhibited enhanced tumor accumulation and biocompatibility. Our findings revealed the pivotal role of BER in overcoming chemotherapy-exacerbated HCC repopulation through Caspase-3-iPLA2-COX-2 pathway, thereby providing a promising and stable nanocarrier integrating DOX and BER for effective HCC chemotherapy without repopulation. STATEMENT OF SIGNIFICANCE: In this work, we have first demonstrated the fact that berberine (Ber) reduces chemotherapy-exacerbated HCC recurrence and studied its mechanism by the aid of a doxorubicin-induced mice HCC relapse model. We then developed a promising strategy that simultaneously inhibits HCC and its recurrence with an HCC-targeted co-delivery nanocarrier HA-MSN@DB and revealed that such an inhibition was related with the suppression of Caspase-3-iPLA2-COX-2 pathway by berberine.


Assuntos
Berberina/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Recidiva Local de Neoplasia/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Células NIH 3T3 , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Dióxido de Silício/química , Distribuição Tecidual/efeitos dos fármacos
8.
Theranostics ; 8(14): 3808-3823, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083261

RESUMO

Despite the vital role miRNA-27a plays in driving the development and progress of liver cancer, miRNA-based inhibition therapy is hampered due to its undesired degradation and off-target effects. Herein, a multifunctional nanoparticle for noninvasive tracking of targeted delivery of anti-miR-27a oligonucleotides against liver cancer was constructed. Methods: Dual-fluorescent conjugates (QD-HA-PEI) were first fabricated through crosslinking hyaluronic acid (HA), polyethyleneimine (PEI) and near-infrared (NIR) fluorescent quantum dots (QDs) via a facile one-pot approach. Antisense oligonucleotide was then encapsulated by QD-HA-PEI to form anti-miR-27a/QD-HA-PEI via electrostatic interactions. Targeting, biodistribution, bioimaging, in vitro cytotoxicity and in vivo anti-tumor effects were evaluated and the underlying mechanism was studied. Results: The NIR fluorescence of anti-miR-27a/QD-HA-PEI could be employed to monitor CD44 receptor-targeted cellular uptake and tumor accumulation. Importantly, the intrinsic fluorescence of anti-miR-27a/QD-HA-PEI remained in the "ON" state in extracellular or blood environment, but switched to the "OFF" state in the intracellular environment, indicating pH-responsive oligonucleotide release. Furthermore, anti-miR-27a/QD-HA-PEI exhibited effective and selective anti-cancer effects in vitro and in vivo with fewer side effects via the direct down-regulation of oncogenic transcription factors FOXO1 and PPAR-γ. Conclusion: Our findings validate the dual-fluorescent nanoparticles as delivery vectors of therapeutic miRNA, capable of simultaneous tumor imaging and tracking of miRNA-based modulation therapy, thereby providing an efficient and safe approach for liver cancer theranostics.


Assuntos
Antagomirs/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Antagomirs/análise , Antagomirs/farmacocinética , Antineoplásicos/análise , Antineoplásicos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Xenoenxertos , Humanos , Nanopartículas/análise , Transplante de Neoplasias , Imagem Óptica/métodos , Resultado do Tratamento
9.
Biofactors ; 44(5): 496-502, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30365229

RESUMO

Berberine, a widely used isoquinoline alkaloid in traditional Chinese medicine, has been proved to be a potential candidate in liver cancer therapy. However, the low therapeutic dose in the tumor target which is due to the poor solubility and oral bioavailability has limited its clinical application. In this study, fluorescent self-carried Berberine microrods (Ber-MRs) were prepared in gram-scale through a facile and cheap antisolvent precipitation method. Ber-MRs exhibited good optical properties, pH-responsive drug release behavior and selective and safe antitumor performance in vitro and in vivo without obvious toxicity. These findings have demonstrated that Ber-MRs are promising for efficient and safe liver cancer therapy. © 2018 BioFactors, 44(5):496-502, 2018.


Assuntos
Berberina/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Medicina Tradicional Chinesa , Administração Oral , Animais , Berberina/síntese química , Berberina/química , Disponibilidade Biológica , Liberação Controlada de Fármacos , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/patologia , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA