Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Res ; 222: 115351, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709030

RESUMO

Wastewater surveillance has proven to be a useful tool for evidence-based epidemiology in the fight against the SARS-CoV-2 virus. It is particularly useful at the population level where acquisition of individual test samples may be time or cost-prohibitive. Wastewater surveillance for SARS-CoV-2 has typically been performed at wastewater treatment plants; however, this study was designed to sample on a local level to monitor the spread of the virus among three communities with distinct social vulnerability indices in Shreveport, Louisiana, located in a socially vulnerable region of the United States. Twice-monthly grab samples were collected from September 30, 2020, to March 23, 2021, during the Beta wave of the pandemic. The goals of the study were to examine whether: 1) concentrations of SARS-CoV-2 RNA in wastewater varied with social vulnerability indices and, 2) the time lag of spikes differed during wastewater monitoring in the distinct communities. The size of the population contributing to each sample was assessed via the quantification of the pepper mild mottle virus (PMMoV), which was significantly higher in the less socially vulnerable community. We found that the communities with higher social vulnerability exhibited greater viral loads as assessed by wastewater when normalized with PMMoV (Kruskal-Wallis, p < 0.05). The timing of the spread of the virus through the three communities appeared to be similar. These results suggest that interconnected communities within a municipality experienced the spread of the SARS-CoV-2 virus at similar times, but areas of high social vulnerability experienced more intense wastewater viral loads.


Assuntos
COVID-19 , Humanos , RNA Viral , SARS-CoV-2 , Carga Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
FASEB J ; 32(8): 4420-4427, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29513569

RESUMO

Recombinant adeno-associated virus (AAV) vectors are a popular genetic approach in neuroscience because they confer such efficient transgene expression in the brain and spinal cord. A number of studies have used AAV to express pathological disease-related proteins in the dopaminergic neurons of the substantia nigra in situ ( e.g., α-synuclein to model aspects of Parkinson's disease). The neuropathology and neurodegeneration of Parkinson's disease occur in a circumscribed pattern in the brain, and one of the most important goals of any gene transfer study is accurate, pinpoint targeting. By combining Cre recombinase-dependent AAVs in Cre-driver rats in which Cre is expressed only in the tyrosine hydroxylase neurons, we have achieved more highly targeted expression of several disease-relevant neuropathological proteins in the substantia nigra pars compacta than using constitutive expression AAV vectors. Alpha-synuclein, tau, transactive response DNA-binding protein of 43 kDa, or the control fluorescent protein yellow fluorescent protein was individually expressed to induce highly targeted, dopaminergic neuron-specific neurodegeneration models. The refined targeting foreshadows a next-generation disease modeling system for expressing neurodegenerative disease-related proteins in a disease-relevant manner. We foresee specific utilities of this in vivo AAV vector targeting of pathological proteins to a well-defined and well-demarcated cell population.-Grames, M. S., Dayton, R. D., Jackson, K. L., Richard, A. D., Lu, X., Klein, R. L. Cre-dependent AAV vectors for highly targeted expression of disease-related proteins and neurodegeneration in the substantia nigra.


Assuntos
Dependovirus/metabolismo , Vetores Genéticos/metabolismo , Integrases/metabolismo , Doenças Neurodegenerativas/metabolismo , Substância Negra/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Ratos , alfa-Sinucleína/metabolismo
3.
Gene Ther ; 25(5): 392-400, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013186

RESUMO

Engineered recombinant adeno-associated virus (AAV) vectors have advanced the transduction of neurons in the CNS on an expansive, wide-scale basis since the papers first using AAV9 for this purpose. Wide-scale CNS expression is relevant to gene therapy as well as indispensable for basic studies such as disease modeling. For example, the wide-scale gene transfer approach could expedite hypothesis testing in vivo relative to the generation of germ-line transgenic mice for all of the genes of interest. Wide-scale gene transfer is more efficient in neonates than in adults, so improving gene transfer efficiency in adults is an important goal. Here we characterized the relatively novel AAV PHP.EB vector for expansive gene transfer in the CNS of adult rats at three doses. The dose-response data were consistent; expression levels can be controlled in a reproducible manner in the rat from moderate to robust levels. Within the CNS, the AAV PHP.EB-derived expression was neuron-selective to neuron-specific, while outside the CNS, organs such as the liver and heart were transduced by the parenteral gene delivery. Though we demonstrated graded expression levels, only the high dose, 1.2 × 1014 vector genomes/kg, yielded efficient expression in spinal cord motor neurons of the adult rat, so this vector dose would be required for models of spinal cord motor neuron disease. The neuronal expression in the rat CNS was greater with AAV PHP.EB than the previous engineered vector AAV PHP.B. AAV PHP.EB is thus one of the most efficient AAV vectors in the field for CNS gene transfer.


Assuntos
Terapia Genética/métodos , Transdução Genética/métodos , Animais , Encéfalo/metabolismo , Linhagem Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiologia , Dependovirus/genética , Relação Dose-Resposta a Droga , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal
4.
BMC Neurosci ; 17(1): 69, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793099

RESUMO

BACKGROUND: Fused in sarcoma (FUS) is an RNA-binding protein associated with the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. ALS manifests in patients as a progressive paralysis which leads to respiratory dysfunction and failure, the primary cause of death in ALS. We expressed human FUS in rats to determine if FUS would induce ALS relevant respiratory changes to serve as an early stage disease indicator. The FUS expression was initiated in adult rats by way of an intravenously administered adeno-associated virus vector serotype 9 (AAV9) providing an adult onset model. RESULTS: The rats developed progressive motor impairments observed as early as 2-3 weeks post gene transfer. Respiratory abnormalities manifested 4-7 weeks post gene transfer including increased respiratory frequency and decreased tidal volume. Rats with breathing abnormalities also had arterial blood acidosis. Similar detailed plethysmographic changes were found in adult rats injected with AAV9 TDP-43. FUS gene transfer to adult rats yielded a consistent pre-clinical model with relevant motor paralysis in the early to middle stages and respiratory dysfunction at the end stage. Both FUS and TDP-43 yielded a similar consistent disease state. CONCLUSIONS: This modeling method yields disease relevant motor and respiratory changes in adult rats. The reproducibility of the data supports the use of this method to study other disease related genes and their combinations as well as a platform for disease modifying interventional strategies.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Modelos Animais de Doenças , Proteína FUS de Ligação a RNA/metabolismo , Transtornos Respiratórios/fisiopatologia , Acidose/fisiopatologia , Esclerose Lateral Amiotrófica/complicações , Animais , Dependovirus/genética , Progressão da Doença , Reação de Fuga/fisiologia , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hipóxia/fisiopatologia , Atividade Motora/fisiologia , Força Muscular/fisiologia , Paralisia/fisiopatologia , Proteína FUS de Ligação a RNA/genética , Ratos Sprague-Dawley , Respiração , Transtornos Respiratórios/etiologia , Transfecção
5.
J Med Primatol ; 44(2): 66-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25639184

RESUMO

BACKGROUND: Most amyotrophic lateral sclerosis (ALS) research has focused on mice, but there are distinct differences in the functional neuroanatomy of the corticospinal pathway in primates vs. rodents. A non-human primate model may be more sensitive and more predictive for therapeutic efficacy. METHODS: Rhesus macaques received recombinant adeno-associated virus (AAV9) encoding either the ALS-related pathological protein TDP-43 or a green fluorescent protein (GFP) control by intravenous administration. Motor function and electromyography were assessed over a nine-month expression interval followed by post-mortem analyses. RESULTS: Recombinant TDP-43 or GFP was stably expressed long term. Although the TDP-43 subjects did not manifest severe paralysis and atrophy, there were trends of a partial disease state in the TDP-43 subjects relative to the control. CONCLUSIONS: These data indicate that a higher gene vector dose will likely be necessary for more robust effects, yet augur that a relevant primate model is feasible.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/genética , Macaca mulatta , Administração Intravenosa , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas de Ligação a DNA/administração & dosagem , Dependovirus/genética , Eletromiografia , Proteínas de Fluorescência Verde/administração & dosagem , Humanos , Atividade Motora , Proteínas Recombinantes/genética
6.
Mol Ther ; 21(7): 1324-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23689600

RESUMO

Pathological inclusions containing transactive response DNA-binding protein 43 kDa (TDP-43) are common in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). TDP-43 normally localizes predominantly to the nucleus, but during disease progression, it mislocalizes to the cytoplasm. We expressed TDP-43 in rats by an adeno-associated virus (AAV9) gene transfer method that transduces neurons throughout the central nervous system (CNS). To mimic the aberrant cytoplasmic TDP-43 found in disease, we expressed a form of TDP-43 with mutations in the nuclear localization signal sequence (TDP-NLS). The TDP-NLS was detected in both the cytoplasm and the nucleus of transduced neurons. Unlike wild-type TDP-43, expression of TDP-NLS did not induce mortality. However, the TDP-NLS induced disease-relevant motor impairments over 24 weeks. We compared the TDP-NLS to a 25 kDa C-terminal proaggregatory fragment of TDP-43 (TDP-25). The clinical phenotype of forelimb impairment was pronounced with the TDP-25 form, supporting a role of this C-terminal fragment in pathogenesis. The results advance previous rodent models by inducing cytoplasmic expression of TDP-43 in the spinal cord, and the non-lethal phenotype enabled long-term study. Approaching a more relevant disease state in an animal model that more closely mimics underlying mechanisms in human disease could unlock our ability to develop therapeutics.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Membro Anterior/metabolismo , Membro Anterior/patologia , Animais , Western Blotting , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Feminino , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Medula Espinal/patologia
7.
Clin Toxicol (Phila) ; 60(3): 324-331, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34278906

RESUMO

CONTEXT: Diethylene glycol (DEG) is an organic compound found in household products but also as a counterfeit solvent in medicines. DEG poisonings are characterized by acute kidney injury (AKI) and by neurological sequelae such as decreased reflexes or face and limb weakness. Previous studies in male rats have demonstrated that neurotoxic effects develop only with the establishment of AKI, but the dose sensitivity of females to DEG toxicity is unknown. OBJECTIVES: Assessing whether subacute administration of DEG in female rats would delineate any sex-differences in neuropathy or in kidney injury. METHODS: Female Wistar-Han rats were orally administered doses of 4 - 6 g/kg DEG every 12 h and monitored for 7 days. Urine was collected every 12 h and endpoint blood and cerebrospinal fluid (CSF) were collected for renal plasma parameters and total protein estimation, respectively. Motor function tests were conducted before and after treatment. Kidney and brain tissue were analyzed for metabolite content. RESULTS: Of 12 animals treated with DEG, 3 developed AKI as confirmed by increased BUN and creatinine concentrations. Renal and brain DGA contents were increased in animals that developed AKI compared to animals without AKI. Total CSF protein content in animals with AKI was markedly elevated compared to control and to treated animals without AKI. Decreases in forelimb grip strength and in locomotor and rearing activity were observed in animals with AKI compared to control and to animals without AKI. DISCUSSION: Repeated dosing with DEG in a female model produced nephrotoxic effects at a dose similar to that in males. The decrease in motor function and increase in CSF protein were only present in females that developed AKI. However, kidney and neurologic effects were assessed only at the end of the treatments, thus limiting determination of which effect occurs first. Limb function and coordination were measured globally and more sensitive tests such as nerve conduction studies might offer a detailed neurotoxicity assessment of the effects of DEG. CONCLUSIONS: These studies show that DEG toxicity does not appear to be sex-specific and that, in males and females, neurological symptoms are present only when DGA accumulation and kidney injury also occur.


Assuntos
Injúria Renal Aguda , Etilenoglicóis , Injúria Renal Aguda/induzido quimicamente , Animais , Feminino , Humanos , Rim , Masculino , Ratos , Ratos Wistar
8.
Neurotoxicology ; 91: 200-210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643325

RESUMO

Diethylene glycol (DEG) is an organic compound that has been found as an adulterant in consumer products as a counterfeit glycerin. Diethylene glycol is metabolized to two primary metabolites: 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA), the latter shown to accumulate in the kidney and cause dose-dependent cell necrosis. DEG poisonings are characterized predominately by acute kidney injury (AKI) but have also produced delayed neurological sequelae such as sensorimotor neuropathy. To better understand these effects, Wistar-Han rats were orally administered a water control or doses of 4 g/kg-6 g/kg DEG every 12 or 24 h for 7 days, with kidney, brain, and spinal cord tissue collected for histopathological analysis. This dosing paradigm resulted in approximately 25 % of the DEG-treated animals developing AKI and also neurotoxicity (sensorimotor dysfunction and elevated cerebrospinal fluid (CSF) protein). Kidney pathology included a severe, diffuse acute kidney tubular necrosis predominantly affecting proximal convoluted tubules. Scattered birefringent crystals consistent with calcium oxalate monohydrate were also found in the proximal tubule of animals with AKI. Demyelination in the dorsal and lateral white matter regions of the cervical, thoracic, and lumbar areas of the spinal cord of a DEG-treated animal with AKI was documented, establishing the neuropathology in DEG-treated animals that developed neurotoxicity. There were significant changes in amino acid concentrations in the CSF that may reflect the neurotoxicity of DEG, specifically glutamate and glutamine, but with no ammonia change. These studies characterized the pathologic aspects of the neurotoxicity in a DEG repeat-dose model.


Assuntos
Injúria Renal Aguda , Síndromes Neurotóxicas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/complicações , Injúria Renal Aguda/metabolismo , Animais , Etilenoglicóis , Rim/metabolismo , Rim/patologia , Síndromes Neurotóxicas/patologia , Ratos , Ratos Wistar
9.
Mol Ther ; 18(12): 2064-74, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20877346

RESUMO

Improved spread of transduction in the central nervous system (CNS) was achieved from intravenous administration of adeno-associated virus serotype-9 (AAV9) to neonatal rats. Spinal lower motor neuron transduction efficiency was estimated to be 78% using the highest vector dose tested at a 12-week interval. The widespread expression could aid studying diseases that affect both the spinal cord and brain, such as amyotrophic lateral sclerosis (ALS). The protein most relevant to neuropathology in ALS is transactive response DNA-binding protein 43 (TDP-43). When expressed in rats, human wild-type TDP-43 rapidly produced symptoms germane to ALS including paralysis of the hindlimbs and muscle wasting, and mortality over 4 weeks that did not occur in controls. The hindlimb atrophy and weakness was evidenced by assessments of rotarod, rearing, overall locomotion, muscle mass, and histology. The muscle wasting suggested denervation, but there was only 14% loss of motor neurons in the TDP-43 rats. Tissues were negative for ubiquitinated, cytoplasmic TDP-43 pathology, suggesting that altering TDP-43's nuclear function was sufficient to cause the disease state. Other relevant pathology in the rats included microgliosis and degenerating neuronal perikarya positive for phospho-neurofilament. The expression pattern encompassed the distribution of neuropathology of ALS, and could provide a rapid, relevant screening assay for TDP-43 variants and other disease-related proteins.


Assuntos
Esclerose Lateral Amiotrófica , Sistema Nervoso Central , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Proteínas Recombinantes/metabolismo , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas de Ligação a DNA/genética , Técnicas de Transferência de Genes , Humanos , Ratos , Proteínas Recombinantes/genética
10.
Clin Toxicol (Phila) ; 59(9): 810-821, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33475432

RESUMO

CONTEXT: Diethylene glycol (DEG) is an organic compound found in household products but also as an adulterant in medicines by acting as a counterfeit solvent. DEG poisonings have been characterized predominately by acute kidney injury (AKI), but also by delayed neurological sequelae such as decreased reflexes or face and limb weakness. OBJECTIVES: Characterizing the neurological symptoms of DEG poisoning in a subacute animal model would create a clearer picture of overall toxicity and possibly make mechanistic connections between kidney injury and neuropathy. METHODS: Male Wistar-Han rats were orally administered doses of 4 - 6 g/kg DEG every 12 or 24 h and monitored for 7 days. Urine was collected every 12 h and endpoint blood and cerebrospinal fluid (CSF) were collected for a renal plasma panel and total protein estimation, respectively. Motor function tests were conducted before and after treatment. Kidney and brain tissue was harvested for metabolic analysis. RESULTS: Of the 43 animals treated with DEG, 11 developed AKI as confirmed by increased BUN and creatinine levels. Renal and brain DGA accumulation was markedly increased in animals that developed AKI compared to animals without AKI. The total protein content in CSF in animals with kidney injury was markedly elevated compared to control and to treated animals without AKI. Significant decreases in forelimb grip strength and decreases in locomotor and rearing activity were observed in animals with AKI compared to control and to animals without AKI. DISCUSSION: Repeated dosing with DEG in an animal model produced nephrotoxic effects like those in studies with acute DEG administration. The decrease in motor function and increase in CSF protein were only present in animals that developed AKI. CONCLUSIONS: These studies show development of neurotoxicity in this DEG animal model and suggest that neurological symptoms are observed only when DGA accumulation and kidney injury also occur.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/fisiopatologia , Etilenoglicóis/sangue , Etilenoglicóis/líquido cefalorraquidiano , Etilenoglicóis/toxicidade , Etilenoglicóis/urina , Síndromes Neurotóxicas/fisiopatologia , Adulto , Animais , Modelos Animais de Doenças , Humanos , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
11.
Mol Ther ; 17(4): 607-13, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19223871

RESUMO

Since the discovery of neuropathological lesions made of TDP-43 and ubiquitin proteins in cases of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), there is a burst of effort on finding related familial mutations and developing animal models. We used an adeno-associated virus (AAV) vector for human TDP-43 expression targeted to the substantia nigra (SN) of rats. Though TDP-43 was expressed mainly in neuronal nuclei as expected, it was also expressed in the cytoplasm, and dotted along the plasma membrane of neurons. Cytoplasmic staining was both diffuse and granular, indicative of preinclusion lesions, over 4 weeks. Ubiquitin deposited in the cytoplasm, specifically in the TDP-43 group, and staining for microglia was increased dose-dependently by 1-2 logs in the TDP-43 group, while neurons were selectively obliterated. Neuronal death induced by TDP-43 was pyknotic and apoptotic. TDP-43 gene transfer caused loss of dopaminergic neurons in the SN and their axons in the striatum. Behavioral motor dysfunction resulted after TDP-43 gene transfer that was vector dose-dependent and progressive over time. The cytoplasmic expression, ubiquitination, and neurodegeneration mimicked features of the TDP-43 diseases, and the gliosis, apoptosis, and motor impairment may also be relevant to TDP-43 disease forms involving nigrostriatal degeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Demência/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Apoptose , Demência/patologia , Dependovirus/genética , Vetores Genéticos , Humanos , Ratos , Transfecção
12.
Mol Ther ; 16(1): 89-96, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17955025

RESUMO

We compared adeno-associated virus (AAV) serotypes for expression levels of green fluorescent protein (GFP) in the adult rat hippocampus by biophotonic imaging. Preparations of AAV serotypes 8, 9, Rh10, and Rh43 incorporating cytomegalovirus (CMV) promoter-driven GFP were purified by a CsCl method. Neither AAV Rh10 nor AAV Rh43 produced greater levels of GFP than AAV8, which was used as a reference. For AAV9, there was an increase relative to AAV8. The CsCl-purified AAV8 displayed an astroglial transduction pattern in contrast to the expected neuronal expression of other AAVs. After preparing the same CMV-GFP plasmid in AAV8 with an iodixanol purification method, the expected neuronal pattern resulted. The astroglial expression with the CsCl AAV8 was probably due to relatively high levels of protein impurities. We compared the CMV promoter with the CMV/chicken beta-actin (CBA) promoter in the context of AAV8, both prepared by iodixanol, and found the CBA promoter to produce stronger GFP expression. At two doses of vectors optimized for serotype, promoter and purification, we did not observe serotype differences among AAV8, AAV9, or AAV Rh10. The purification method can therefore impact the transduction pattern as well as the results when comparing serotype strengths.


Assuntos
Química Encefálica/genética , Dependovirus/classificação , Dependovirus/genética , Regiões Promotoras Genéticas , Transdução Genética , Animais , Linhagem Celular , Césio , Cloretos , Dependovirus/isolamento & purificação , Vetores Genéticos/administração & dosagem , Vetores Genéticos/síntese química , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Vírus da Hepatite B da Marmota/genética , Hipocampo/metabolismo , Hipocampo/virologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Sorotipagem , Transdução Genética/métodos , Ácidos Tri-Iodobenzoicos
13.
Eur J Neurosci ; 27(7): 1615-25, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18380664

RESUMO

Neurodegenerative diseases involving neurofibrillary tangle pathology are pernicious. By expressing the microtubule-associated protein tau, a major component of tangles, with a viral vector, we induce neuropathological sequelae in rats that are similar to those seen in human tauopathies. We tested several variants of the adeno-associated virus (AAV) vector for tau expression in the nigrostriatal system in order to develop models with graded onset and completeness. Whereas previous studies with AAV2 tau vectors produced partial lesions of the nigrostriatal system, AAV9 or AAV10 tau vectors were more robust. These vectors had formidable efficacy relative to 6-hydroxydopamine for dopamine loss in the striatum. Time-courses for tau transgene expression, dopamine loss and rotational behavior tracked the disease progression with the AAV9 tau vector. There was a nearly complete lesion over a delayed time-course relative to 6-hydroxydopamine, with a sequence of tau expression by 1 week, dopamine loss by 2 weeks and then behavior effect by 3-4 weeks. Relative to AAV2 or AAV8, tau expression from AAV9 or AAV10 peaked earlier and caused more dopamine loss. Varying vector efficiencies produced graded states of disease up to nearly complete. The disease models stemming from the AAV variants AAV9 or AAV10 may be useful for rapid drug screening, particularly for tau diseases that affect the nigrostriatal system, such as progressive supranuclear palsy.


Assuntos
Dependovirus/metabolismo , Vetores Genéticos/biossíntese , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tauopatias/metabolismo , Proteínas tau/biossíntese , Animais , Linhagem Celular , Dependovirus/classificação , Dependovirus/genética , Dopamina/biossíntese , Dopamina/genética , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos/genética , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Sorotipagem , Tauopatias/patologia , Tauopatias/virologia , Proteínas tau/genética
14.
J Alzheimers Dis ; 63(2): 725-740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29660939

RESUMO

Trace eyeblink conditioning is a hippocampus-dependent associative learning paradigm which is impaired in patients with Alzheimer's disease (AD) and animal AD models. Learning in this paradigm accompanies changes in oscillatory activity in forebrain regions, some of which are loci of pathogenic changes in prodromal AD stages. These observations motivated us to examine how cortical event-related potentials (ERPs) during this paradigm are affected by two features of the asymptomatic, AD-related brain abnormality, entorhinal tau accumulation and mild cholinergic deficit. Adult rats received viral overexpression of P301L mutant human tau in the entorhinal cortex, low-dose scopolamine treatment, or both. Electroencephalograms were recorded with epidural electrodes on the surface of the frontal, parietal, and temporal cortices during differential and reversal trace eyeblink conditioning. All rats developed conditioned responses to one of two stimuli (auditory or visual) paired with mild eyelid shock (CS+), but not to the other stimulus presented alone (CS-). They were also able to adjust the response when the stimulus contingency was reversed. With learning, the amplitude of several ERP components in the frontal and temporal cortices came to differentiate the CS+ from CS-. Scopolamine affected the learning-related change in temporal P2 and other learning-unrelated components in three regions. Entorhinal tau overexpression primary affected the amplitude of temporal visual ERPs and learning-unrelated frontal and temporal auditory ERP components. The double manipulation only affected two components of temporal auditory ERPs. Thus, cortical ERPs during differential associative learning are sensitive to asymptomatic brain abnormality associated with AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Aprendizagem por Associação/fisiologia , Encéfalo/fisiopatologia , Condicionamento Palpebral/fisiologia , Potenciais Evocados , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Animais , Percepção Auditiva/fisiologia , Encéfalo/patologia , Diagnóstico por Computador , Eletroencefalografia , Eletrochoque , Potenciais Evocados/fisiologia , Masculino , Mutação , Ratos Long-Evans , Escopolamina , Máquina de Vetores de Suporte , Percepção Visual/fisiologia , Proteínas tau/administração & dosagem , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Sci Rep ; 8(1): 4606, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545601

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurodegenerative disorders marked in most cases by the nuclear exclusion and cytoplasmic deposition of the RNA binding protein TDP43. We previously demonstrated that ALS-associated mutant TDP43 accumulates within the cytoplasm, and that TDP43 mislocalization predicts neurodegeneration. Here, we sought to prevent neurodegeneration in ALS/FTD models using selective inhibitor of nuclear export (SINE) compounds that target exportin-1 (XPO1). SINE compounds modestly extend cellular survival in neuronal ALS/FTD models and mitigate motor symptoms in an in vivo rat ALS model. At high doses, SINE compounds block nuclear egress of an XPO1 cargo reporter, but not at lower concentrations that were associated with neuroprotection. Neither SINE compounds nor leptomycin B, a separate XPO1 inhibitor, enhanced nuclear TDP43 levels, while depletion of XPO1 or other exportins had little effect on TDP43 localization, suggesting that no single exporter is necessary for TDP43 export. Supporting this hypothesis, we find overexpression of XPO1, XPO7 and NXF1 are each sufficient to promote nuclear TDP43 egress. Taken together, our results indicate that redundant pathways regulate TDP43 nuclear export, and that therapeutic prevention of cytoplasmic TDP43 accumulation in ALS/FTD may be enhanced by targeting several overlapping mechanisms.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/patologia , Neurônios/patologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Citoplasma/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Feminino , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/metabolismo , Humanos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
16.
J Alzheimers Dis ; 65(4): 1079-1086, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30124449

RESUMO

A risk factor for cardiovascular disease (CVD), mutant PCSK9, was expressed in APP/PS1 mice to study the CVD-Alzheimer's disease inter-relationship. Cholesterol levels were elevated by 5-6-fold from 3 to 13 weeks after PCSK9 gene transfer. We tested whether hypercholesterolemia would increase amyloid-ß plaques at a relatively early stage of plaque deposition. Plaque burden was increased in the hippocampus of PCSK9 treated mice though the increase was modest compared to the large elevation in cholesterol. Elevating cholesterol via gene transfer could be valuable in a variety of disease models compared to making crosses with germ-line transgenic mouse models of CVD.


Assuntos
Colesterol/sangue , Hipercolesterolemia/genética , Placa Amiloide/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Transdução Genética/métodos , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipercolesterolemia/etiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Presenilina-1/genética , Fatores de Tempo
17.
J Vis Exp ; (126)2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28872135

RESUMO

Adeno-associated virus (AAV) vectors are a key reagent in the neurosciences for clustered regularly interspaced short palindromic repeats (CRISPR), optogenetics, cre-lox targeting, etc. The purpose of this manuscript is to aid the investigator attempting expansive central nervous system (CNS) gene transfer in the rat via tail vein injection of AAV. Wide-scale expression is relevant for conditions with widespread pathology, and a rat model is significant due to its greater size and physiologic similarities to humans compared to mice. In this example application, a wide-scale neuronal transduction is used to mimic a neurodegenerative disease that affects the entire spinal cord, amyotrophic lateral sclerosis (ALS). The efficient wide-scale CNS transduction can also be used to deliver therapeutic protein factors in pre-clinical studies. After a post-injection expression interval of several weeks, the effects of the transduction are evaluated. For a green fluorescent protein (GFP) control vector, the amount of GFP in the cerebellum is estimated quickly and reliably by a basic imaging program. For motor disease phenotypes that are induced by the ALS related protein transactive response DNA-binding protein of 43 kDa (TDP-43), the deficits are scored by escape reflex and rotarod. Beyond disease modeling and gene therapy, there are diverse potential applications for the wide-scale gene targeting described here. The expanded use of this method will aid in expediting hypothesis testing in the neurosciences and neurogenetics.


Assuntos
Esclerose Lateral Amiotrófica/genética , Sistema Nervoso Central/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Administração Intravenosa , Esclerose Lateral Amiotrófica/metabolismo , Animais , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Transdução Genética
18.
Neurobiol Aging ; 58: 151-162, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28735144

RESUMO

A neural signature of asymptomatic preclinical Alzheimer's disease (AD) is disrupted connectivity between brain regions; however, its underlying mechanisms remain unknown. Here, we tested whether a preclinical pathologic feature, tau aggregation in the entorhinal cortex (EC) is sufficient to disrupt the coordination of local field potentials (LFPs) between its efferent regions. P301L-mutant human tau or green fluorescent protein (GFP) was virally overexpressed in the EC of adult rats. LFPs were recorded from the dorsal hippocampus and prelimbic medial prefrontal cortex while the rats underwent trace eyeblink conditioning where they learned to associate 2 stimuli separated by a short time interval. In GFP-expressing rats, the 2 regions strengthened phase-phase and amplitude-amplitude couplings of theta and gamma oscillations during the interval separating the paired stimuli. Despite normal memory acquisition, this learning-related, inter-region oscillatory coupling was attenuated in the tau-expressing rats while prefrontal phase-amplitude theta-gamma cross-frequency coupling was elevated. Thus, EC tau aggregation caused aberrant long-range circuit activity during associative learning, identifying a culprit for the neural signature of preclinical AD stages.


Assuntos
Córtex Entorrinal , Hipocampo/fisiopatologia , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiopatologia , Tauopatias/fisiopatologia , Potenciais de Ação/fisiologia , Doença de Alzheimer , Animais , Piscadela/fisiologia , Condicionamento Palpebral/fisiologia , Córtex Entorrinal/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Agregação Patológica de Proteínas , Ratos Long-Evans , Proteínas tau/genética , Proteínas tau/metabolismo
19.
PLoS One ; 12(1): e0169291, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076378

RESUMO

One of the proteins most frequently found in neuropathological lesions is the ubiquitin binding protein p62 (sequestosome 1). Post-mortem analysis of p62 is a defining diagnostic marker in several neurodegenerative diseases including amyotrophic lateral sclerosis and inclusion body myositis. Since p62 functions in protein degradation pathways including autophagy, the build-up of p62-positive inclusions suggests defects in protein clearance. p62 was expressed unilaterally in the rat substantia nigra with an adeno-associated virus vector (AAV9) in order to study p62 neuropathology. Inclusions formed within neurons from several days to several weeks after gene transfer. By electron microscopy, the inclusions were found to contain packed 10 nm thick filaments, and mitochondria cristae structure was disrupted, resulting in the formation of empty spaces. In corollary cell culture transfections, p62 clearly impaired mitochondrial function. To probe for potential effects on macroautophagy, we co-expressed p62 with a double fluorescent tagged reporter for the autophagosome protein LC3 in the rat. p62 induced a dramatic and specific dissociation of the two tags. By 12 weeks, a rotational behavior phenotype manifested, consistent with a significant loss of dopaminergic neurons analyzed post-mortem. p62 overexpression resulted in a progressive and robust pathology model with neuronal inclusions and neurodegeneration. p62 gene transfer could be a novel methodological probe to disrupt mitochondrial function or autophagy in the brain and other tissues in vivo.


Assuntos
Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Doenças Neurodegenerativas/genética , Proteína Sequestossoma-1/genética , Substância Negra/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/patologia , Doenças Neurodegenerativas/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Proteína Sequestossoma-1/fisiologia
20.
Neurosci Lett ; 401(1-2): 130-5, 2006 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-16554120

RESUMO

Parkin is a ubiquitin ligase involved in the ubiquitin-proteasome system. Elevating parkin expression in cells reduces markers of oxidative stress while blocking parkin expression increases oxidative stress. In parkin gene knock down mouse and fly models, mitochondria function is deficient. Parkin is neuroprotective against a variety of toxic insults, while it remains unclear which of the above properties of parkin may mediate the protective actions. One of the models for which parkin is protective is overexpression of alpha-synuclein, a protein that self-aggregates in Parkinson disease. The microtubule-associated protein tau is another protein that self-aggregates in specific neurodegenerative diseases that also involve loss of dopamine neurons such as frontotemporal dementia with parkinsonism linked to chromosome 17, progressive supranuclear palsy and corticobasal degeneration. We recently developed a tau-induced dopaminergic degeneration model in rats using adeno-associated virus vectors. In this study, we successfully targeted either a mixed tau/parkin vector or mixed tau/control vector to the rat substantia nigra. While there was significant loss of dopamine neurons in the tau/control group relative to uninjected substantia nigra, there was no cell loss in the tau/parkin group. We found no difference in total tau levels between tau/control and tau/parkin groups. Parkin therefore protects dopamine neurons against tau as it does against alpha-synuclein, which further supports parkin as a therapeutic target for diseases involving loss of dopamine neurons.


Assuntos
Degeneração Neural/genética , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/genética , Substância Negra/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas tau/genética , Adenoviridae/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Masculino , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Ratos , Ratos Sprague-Dawley , Substância Negra/patologia , Substância Negra/fisiopatologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA