Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Curr Biol ; 30(20): R1254-R1255, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33080193

RESUMO

We previously reported that the polysaccharide chitin, a key component of arthropod exoskeletons and fungal cell walls, is endogenously produced by fishes and amphibians in spite of the widely held view that it was not synthesized by vertebrates [1]. Genes encoding chitin synthase enzymes were found in the genomes of a number of fishes and amphibians and shown to be correspondingly expressed at the sites where chitin was localized [1,2]. In this report, we present evidence suggesting that chitin is prevalent within the specialized electrosensory organs of cartilaginous fishes (Chondrichthyes). These organs, the Ampullae of Lorenzini (AoL), are widely distributed and comprise a series of gel-filled canals emanating from pores in the skin (Figure 1A). The canals extend into bulbous structures called alveoli that contain sensory cells capable of detecting subtle changes in electric fields (Figure 1B) [3,4]. The findings described here extend the number of vertebrate taxa where endogenous chitin production has been detected and raise questions regarding chitin's potential function in chondrichthyan fishes and other aquatic vertebrates.


Assuntos
Quitina Sintase/genética , Quitina/metabolismo , Peixes/genética , Peixes/metabolismo , Animais , Genoma/genética , Células Receptoras Sensoriais/química
2.
Endocrinology ; 152(6): 2278-89, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21505050

RESUMO

The evolution of the IGF binding protein (IGFBP) gene family has been difficult to resolve. Both chromosomal and serial duplications have been suggested as mechanisms for the expansion of this gene family. We have identified and annotated IGFBP sequences from a wide selection of vertebrate species as well as Branchiostoma floridae and Ciona intestinalis. By combining detailed sequence analysis with sequence-based phylogenies and chromosome information, we arrive at the following scenario: the ancestral chordate IGFBP gene underwent a local gene duplication, resulting in a gene pair adjacent to a HOX cluster. Subsequently, the gene family expanded in the two basal vertebrate tetraploidization (2R) resulting in the six IGFBP types that are presently found in placental mammals. The teleost fish ancestor underwent a third tetraploidization (3R) that further expanded the IGFBP repertoire. The five sequenced teleost fish genomes retain 9-11 of IGFBP genes. This scenario is supported by the phylogenies of three adjacent gene families in the HOX gene regions, namely the epidermal growth factor receptors (EGFR) and the Ikaros and distal-less (DLX) transcription factors. Our sequence comparisons show that several important structural components in the IGFBPs are ancestral vertebrate features that have been maintained in all orthologs, for instance the integrin interaction motif Arg-Gly-Asp in IGFBP-2. In contrast, the Arg-Gly-Asp motif in IGFBP-1 has arisen independently in mammals. The large degree of retention of IGFBP genes after the ancient expansion of the gene family strongly suggests that each gene evolved distinct and important functions early in vertebrate evolution.


Assuntos
Evolução Molecular , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Família Multigênica , Vertebrados/genética , Motivos de Aminoácidos , Animais , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Vertebrados/classificação
3.
Ann N Y Acad Sci ; 1163: 201-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19456340

RESUMO

Comparative studies of proteins often face the problem of distinguishing a true orthologue (species homologue) from a paralogue (a gene duplicate). This identification task is particularly challenging for endocrine peptides and neuropeptides because they are short and usually have several invariant positions. For some peptide families, this has led to a terminology with peptide names relating to the first species where a specific peptide sequence was determined, such as chicken or salmon gonadotropin-releasing hormone, or names that highlight amino acid differences, e.g., Lys-vasopressin. With accumulating information from multiple species, such a terminology becomes almost impenetrable for nonexperts and difficult even for aficionados. The sequenced genomes offer a new way to distinguish orthologues and paralogues, namely by location of the genes relative to neighboring genes on the chromosomes. In addition, the genome databases can ideally provide a complete listing of the family members in each species. Many vertebrate gene families have expanded in the two basal tetraploidizations (2R) and the teleost fish third tetraploidization (3R), after which some vertebrate lineages have lost some of the duplicates. We review here some peptide families (neuropeptide Y, oxytocin-vasopressin, and somatostatin) where genomic information helps simplify nomenclature. This approach is useful also for other gene families, such as peptide receptors.


Assuntos
Evolução Biológica , Sistema Endócrino/metabolismo , Genoma/genética , Vertebrados/genética , Vertebrados/metabolismo , Animais , Hormônios/classificação , Hormônios/genética , Hormônios/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA