Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Arch Pharm (Weinheim) ; 357(9): e2400086, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38807029

RESUMO

A series of benzoxazole-based amides and sulfonamides were synthesized and evaluated for their human peroxisome proliferator-activated receptor (PPAR)α and PPARγ activity. All tested compounds showed a dual antagonist profile on both PPAR subtypes; based on transactivation results, seven compounds were selected to test their in vitro antiproliferative activity in a panel of eight cancer cell lines with different expression rates of PPARα and PPARγ. 3f was identified as the most cytotoxic compound, with higher potency in the colorectal cancer cell lines HT-29 and HCT116. Compound 3f induced a concentration-dependent activation of caspases and cell-cycle arrest in both colorectal cancer models. Docking experiments were also performed to shed light on the putative binding mode of this novel class of dual PPARα/γ antagonists.


Assuntos
Antineoplásicos , Benzoxazóis , Proliferação de Células , Neoplasias Colorretais , Simulação de Acoplamento Molecular , PPAR alfa , PPAR gama , Humanos , Benzoxazóis/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Células HT29 , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células HCT116 , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/química
2.
Arch Pharm (Weinheim) ; : e2400165, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054610

RESUMO

Chronic wounds significantly impact the patients' quality of life, creating an urgent interdisciplinary clinical challenge. The development of novel agents capable of accelerating the healing process is essential. Caffeic acid phenethyl ester (CAPE) has demonstrated positive effects on skin regeneration. However, its susceptibility to degradation limits its pharmaceutical application. Chemical modification of the structure improves the pharmacokinetics of this bioactive phenol. Hence, two novel series of CAPE hybrids were designed, synthesized, and investigated as potential skin regenerative agents. To enhance the stability and therapeutic efficacy, a caffeic acid frame was combined with quinolines or isoquinolines by an ester (1a-f) or an amide linkage (2a-f). The effects on cell viability of human gingival fibroblasts (HGFs) and HaCaT cells were evaluated at different concentrations; they are not cytotoxic, and some proved to stimulate cell proliferation. The most promising compounds underwent a wound-healing assay in HGFs and HaCaT at the lowest concentrations. Antimicrobial antioxidant properties were also explored. The chemical and thermal stabilities of the best compounds were assessed. In silico predictions were employed to anticipate skin penetration capabilities. Our findings highlight the therapeutic potential of caffeic acid phenethyl ester (CAPE) derivatives 1a and 1d as skin regenerative agents, being able to stimulate cell proliferation, control bacterial growth, regulate ROS levels, and being thermally and chemically stable. An interesting structure-activity relationship was discussed to suggest a promising multitargeted approach for enhanced wound healing.

3.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126054

RESUMO

Nitric oxide (NO) has been defined as the "miracle molecule" due to its essential pleiotropic role in living systems. Besides its implications in physiologic functions, it is also involved in the development of several disease states, and understanding this ambivalence is crucial for medicinal chemists to develop therapeutic strategies that regulate NO production without compromising its beneficial functions in cell physiology. Although nitric oxide synthase (NOS), i.e., the enzyme deputed to the NO biosynthesis, is a well-recognized druggable target to regulate NO bioavailability, some issues have emerged during the past decades, limiting the progress of NOS modulators in clinical trials. In the present review, we discuss the most promising advancements in the research of small molecules that are able to regulate NOS activity with improved pharmacodynamic and pharmacokinetic profiles, providing an updated framework of this research field that could be useful for the design and development of new NOS modulators.


Assuntos
Inibidores Enzimáticos , Óxido Nítrico Sintase , Óxido Nítrico , Humanos , Óxido Nítrico Sintase/metabolismo , Animais , Óxido Nítrico/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768301

RESUMO

Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.


Assuntos
Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Polifenóis , Resveratrol , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/fisiologia , Neoplasias Pancreáticas
6.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834684

RESUMO

Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.


Assuntos
Células Endoteliais , Fibroblastos , Resveratrol/farmacologia , Células Cultivadas , Fibroblastos/metabolismo , Cicatrização , RNA Mensageiro/metabolismo
7.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956831

RESUMO

PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 µM) for 2 h e 30' and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1-100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.


Assuntos
PPAR gama , Pró-Opiomelanocortina , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Peróxido de Hidrogênio/farmacologia , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Serotonina/metabolismo , Serotonina/farmacologia
8.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431918

RESUMO

Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1−9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1−9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.


Assuntos
Anidrases Carbônicas , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/química , Resveratrol/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Monoaminoxidase/metabolismo , Anidrases Carbônicas/metabolismo
9.
J Enzyme Inhib Med Chem ; 36(1): 1632-1645, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34289751

RESUMO

Nonsteroidal aromatase inhibitors (NSAIs) are well-established drugs for the therapy of breast cancer. However, they display some serious side effects, and their efficacy can be compromised by the development of chemoresistance. Previously, we have reported different indazole-based carbamates and piperidine-sulphonamides as potent aromatase inhibitors. Starting from the most promising compounds, here we have synthesised new indazole and triazole derivatives and evaluated their biological activity as potential dual agents, targeting both the aromatase and the inducible nitric oxide synthase, being this last dysregulated in breast cancer. Furthermore, selected compounds were evaluated as antiproliferative and cytotoxic agents in the MCF-7 cell line. Moreover, considering the therapeutic diversity of azole-based compounds, all the synthesized compounds were also evaluated as antifungals on different Candida strains. A docking study, as well as molecular dynamics simulation, were carried out to shed light on the binding mode of the most interesting compound into the different target enzymes catalytic sites.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Inibidores da Aromatase/farmacologia , Compostos Azo/farmacologia , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Micoses/tratamento farmacológico , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Compostos Azo/síntese química , Compostos Azo/química , Candida/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
10.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803309

RESUMO

The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Terapia de Alvo Molecular/tendências
11.
Molecules ; 25(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297520

RESUMO

The increased risk of illness and disability is related to the age inevitable biological changes. Oxidative stress is a proposed mechanism for many age-related diseases. The crucial importance of polyphenol pharmacophore for aging process is largely described thanks to its effects on concentrations of reactive oxygen species. Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV) plays a critical role in slowing the aging process but has a poor bioavailabity after oral intake. In this present work, a series of RSV derivatives was designed, synthesized, and evaluated as potential antioxidant agents. These derivatives contain substituents with different electronic and steric properties in different positions of aromatic rings. This kind of substituents affects the activity and the bioavailability of these compounds compared with RSV used as reference compound. Studies of Log P values demonstrated that the introduction of halogens gives the optimum lipophilicity to be considered promising active agents. Among them, compound 6 showed the higher antioxidant activity than RSV. The presence of trifluoromethyl group together with a chlorine atom increased the antioxidant activity compared to RSV.


Assuntos
Técnicas de Química Sintética , Estilbenos/síntese química , Estilbenos/farmacologia , Animais , Linhagem Celular , Halogenação , Humanos , Camundongos , Modelos Teóricos , Estrutura Molecular , Estilbenos/química
12.
Molecules ; 25(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326556

RESUMO

A simple, quick, easy and cheap tandem mass spectrometry (MS/MS) method for the determination of adenosine monophosphate (AMP) and cyclic adenosine monophosphate (cAMP) has been newly developed. This novel MS/MS method was applied for the evaluation of the inhibitory effect of a novel 2-oxo-1,2-dihydropyridine-3-carbonitrile derivative, also named DF492, on PDE3 enzyme activity in comparison to its parent drug milrinone. Molecule DF492, with an IC50 of 409.5 nM, showed an inhibition of PDE3 greater than milrinone (IC50 = 703.1 nM). To explain the inhibitory potential of DF492, molecular docking studies toward the human PDE3A were carried out with the aim of predicting the binding mode of DF492. The presence of different bulkier decorating fragments in DF492 was pursued to shift affinity of this novel molecule toward PDE3A compared to milrinone in accordance with both the theoretical and experimental results. The described mass spectrometric approach could have a wider potential use in kinetic and biomedical studies and could be applied for the determination of other phosphodiesterase inhibitor molecules.


Assuntos
Monofosfato de Adenosina/química , AMP Cíclico/química , Espectrometria de Massas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Fosfodiesterase 3/química , Monofosfato de Adenosina/farmacologia , Sítios de Ligação , AMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Milrinona/farmacologia , Estrutura Molecular , Inibidores da Fosfodiesterase 3/farmacologia , Ligação Proteica , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
13.
Bioorg Med Chem Lett ; 29(16): 2302-2306, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272790

RESUMO

The reduced activation of PPARs has a positive impact on cancer cell growth and viability in multiple preclinical tumor models, suggesting a new therapeutic potential for PPAR antagonists. In the present study, the benzothiazole amides 2a-g were synthesized and their activities on PPARs were investigated. Transactivation assay showed a moderate activity of the novel compounds as PPARα antagonists. Notably, in cellular assays they exhibited cytotoxicity in pancreatic, colorectal and paraganglioma cancer cells overexpressing PPARα. In particular, compound 2b showed the most remarkable inhibition of viability (greater than 90%) in two paraganglioma cell lines, with IC50 values in the low micromolar range. In addition, 2b markedly impaired colony formation capacity in the same cells. Taken together, these results show a relevant anti-proliferative potential of compound 2b, which appears particularly effective in paraganglioma, a rare tumor poorly responsive to chemotherapy.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Relação Estrutura-Atividade
14.
J Enzyme Inhib Med Chem ; 34(1): 1051-1061, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31074307

RESUMO

A large library of fibrate-based N-acylsulphonamides was designed, synthesised, and fully characterised in order to propose them as zinc binders for the inhibition of human carbonic anhydrase (hCA) enzymatic activity. Synthesised compounds were tested against four hCAs (I, II, IX, and XII) revealing a promising submicromolar inhibitory activity characterised by an isozyme selectivity pattern. Structural modifications explored within this scaffold are: presence of an aryl ring on the sulphonamide, p-substitution of this aryl ring, benzothiazole or benzophenone as core nuclei, and an n-propyl chain or a geminal dimethyl at Cα carbon. Biological results fitted well with molecular modelling analyses, revealing a putative direct interaction with the zinc ion in the active site of hCA I, II and IX. These findings supported the exploration of less investigated secondary sulphonamides as potential hCA inhibitors.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
15.
J Enzyme Inhib Med Chem ; 34(1): 1400-1413, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31401897

RESUMO

A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives.


Assuntos
Ácido Benzoico/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/efeitos dos fármacos , Desenho de Fármacos , Isoenzimas/efeitos dos fármacos , Inibidores da Anidrase Carbônica/síntese química , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Humanos , Simulação de Acoplamento Molecular , Estereoisomerismo , Relação Estrutura-Atividade
16.
Drug Dev Res ; 80(3): 285-293, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790326

RESUMO

The high incidence and mortality of invasive fungal infections and serious drug resistance have become a global public health issue. There is an urgent need for alternative antimicrobials to control fungal infections and targeting it by antifungal substances from the natural sources represents a promising new strategy for the development of novel antifungal agents. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a phytoalexin produced by plant species in response to environmental stress or pathogenic attacks. It has many known and potential therapeutic applications in human general homeostasis; it mediates a great number of biological responses relevant for human health such as anticancer, cardio and neuroprotective, antioxidant, and antimicrobial activities. Resveratrol is a natural antifungal agent, therefore it can be considered as a scaffold for designing structural relatives potentially capable of mediating more intense responses in a more specific way. Also, stilbenes produced by several plants may be useful lead structure for the chemical synthesis of antifungal. Their antifungal potential represents a useful solution to the drug resistance and side effect complications that occur after pharmacological treatment of infectious diseases. The purpose of this review is to present an overview on resveratrol derivatives, both natural and synthetic, with antifungal activity and summarize the chemical structure and the therapeutic versatility of stilbene-containing compounds.


Assuntos
Antifúngicos , Estilbenos , Antifúngicos/química , Antifúngicos/farmacologia , Química Farmacêutica , Humanos , Estilbenos/química , Estilbenos/farmacologia
17.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678338

RESUMO

Gliomas are the most aggressive adult primary brain tumors. Expression of inducible Nitric Oxide Synthase has been reported as a hallmark of chemoresistance in gliomas and several studies have reported that inhibition of inducible Nitric Oxide Synthase could be related to a decreased proliferation of glioma cells. The present work was to analyze the molecular effects of the acetamidine derivative compound 39 (formally CM544, N-(3-{[(1-iminioethyl)amino]methyl}benzyl) prolinamide dihydrochloride), a newly synthetized iNOS inhibitor, in a C6 rat glioma cell model. There is evidence of CM544 selective binding to the iNOS, an event that triggers the accumulation of ROS/RNS, the expression of Nrf-2 and the phosphorylation of MAPKs after 3 h of treatment. In the long run, CM544 leads to the dephosphorylation of p38 and to a massive cleavage of PARP-1, confirming the block of C6 rat glioma cell proliferation in the G1/S checkpoint and the occurrence of necrotic cell death.


Assuntos
Amidinas/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glioma/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Prolina/análogos & derivados , Animais , Linhagem Celular Tumoral , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prolina/farmacologia , Proteólise , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Bioorg Med Chem Lett ; 26(13): 3192-3194, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161804

RESUMO

The most frequently used treatment for hormone receptor positive breast cancer in post-menopausal women are aromatase inhibitors. In order to develop new aromatase inhibitors, we designed and synthesized new imidazolylmethylpiperidine sulfonamides using the structure of the previously identified aromatase inhibitor SYN 20028567 as starting lead. By this approach, three new aromatase inhibitors with IC50 values that are similar to that of letrozole and SYN 20028567 were identified.


Assuntos
Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Piperidinas/farmacologia , Sulfonamidas/farmacologia , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
19.
Int J Mol Sci ; 17(10)2016 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-27782083

RESUMO

Matrix metalloproteinases (MMPs) are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs) have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data.


Assuntos
Desenho de Fármacos , Hidroxiquinolinas/química , Metaloproteinase 2 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Naftiridinas/química , Ensaios Enzimáticos , Humanos , Hidroxiquinolinas/síntese química , Cinética , Inibidores de Metaloproteinases de Matriz/síntese química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftiridinas/síntese química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Zinco/química
20.
J Struct Biol ; 191(3): 332-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26185032

RESUMO

Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia.


Assuntos
PPAR alfa/agonistas , PPAR alfa/química , PPAR gama/agonistas , PPAR gama/química , Sítios de Ligação , Ligantes , Ligação Proteica , Estrutura Secundária de Proteína , Tomografia por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA