Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1354651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384954

RESUMO

Digestive problems, both those with a clear pathogenic origin (e.g., Escherichia coli) and those without obvious pathogen involvement [e.g., syndromes like epizootic rabbit enteropathy (ERE)], are common in production rabbits and account for the majority of losses in meat rabbit production. A multitude of nutritional, genetic and housing factors have been found to play a role in the occurrence of digestive problems. However, the exact early pathophysiological mechanism, including the links between aforementioned risk factors and subsequent development and expression of gastrointestinal disease, is less clear, especially in non-specific enteropathies without obvious pathogen involvement. In this review, we aim to shed more light on the derailment of the normal gastrointestinal functioning in rabbits. We discuss a conceptual integrated view of this derailment, based on an "overload" pathway and a "chymus jam" pathway, which may occur simultaneously and interact. The "overload" pathway centers around exposure to excess amounts of easily fermentable substrate (e.g., starch and protein) that might be incompletely digested prior to entering the caecum. Once there, hyperfermentation may result in changes in caecal pH and inhibition of the normal microflora. The second pathway centers around a chymus jam resulting from a compromised passage rate. Here, reduced hindgut motility (e.g., resulting from stress or limited fiber supply) leads to reduced flow of digesta and increased caecal retention times, which might lead to the production of abnormal caecal fermentation products and subsequent inhibition of the normal microflora. A central role in the presumed mechanism is attributed to the fusus coli. We discuss the suggested mechanisms behind both pathways, as well as the empirical substantiation and alignment between theoretical concepts and observations in practice. The proposed hypotheses may explain the effect of time-based restriction to prevent ERE, which is widely applied in practice but to date not really understood, and suggest that the particle size of fiber may be a key point in the normal functioning of the colon and fusus coli. Further insight into the circumstances leading to the derailment of physiological processes in the rabbit hindgut could provide a meaningful starting point to help improve their gastrointestinal resilience.

2.
J Anim Sci ; 97(10): 4152-4159, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31504579

RESUMO

In pig production, efficiency is benefiting from uniform growth in pens resulting in single deliveries from a pen of possibly all animals in the targeted weight range. Abnormalities, like pneumonia or aberrant growth, reduce production efficiency as it reduces the uniformity and might cause multiple deliveries per batch and pigs delivered with a low meat yield or outside the targeted weight range. Early identification of pigs prone to develop these abnormalities, for example, at the onset of the growing-finishing phase, would help to prevent heterogeneous pens through management interventions. Data about previous production cycles at the farm combined with data from the piglet's own history may help in identifying these abnormalities. The aim of this study, therefore, was to predict at the onset of the growing-finishing phase, that is, at 3 mo in advance, deviant pigs at slaughter with a machine-learning technique called boosted trees. The dataset used was extracted from the farm management system of a research center. It contained over 70,000 records of individual pigs born between 2004 and 2016, including information on, for example, offspring, litter size, transfer dates between production stages, their respective locations within the barns, and individual live-weights at several production stages. Results obtained on an independent test set showed that at a 90% specificity rate, the sensitivity was 16% for low meat percentage, 20% for pneumonia and 36% for low lifetime growth rate. For low lifetime growth rate, this meant an almost three times increase in positive predictive value compared to the current situation. From these results, it was concluded that routine performance information available at the onset of the growing-finishing phase combined with data about previous production cycles formed a moderate base to identify pigs prone to develop pneumonia (AUC > 0.60) and a good base to identify pigs prone to develop growth aberrations (AUC > 0.70) during the growing-finishing phase. The mentioned information, however, was not a sufficient base to identify pigs prone to develop low meat percentage (AUC < 0.60). The shown ability to identify growth aberrations and pneumonia can be considered a good first step towards the development of an early warning system for pigs in the growing-finishing phase.


Assuntos
Ração Animal/análise , Abrigo para Animais/normas , Pneumonia/veterinária , Carne Vermelha/análise , Doenças dos Suínos/prevenção & controle , Criação de Animais Domésticos , Animais , Composição Corporal , Meio Ambiente , Feminino , Aprendizado de Máquina , Masculino , Pneumonia/prevenção & controle , Suínos , Árvores
3.
Domest Anim Endocrinol ; 27(3): 287-301, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15451075

RESUMO

The GH-IGF-I axis is of major importance for the regulation of body growth and composition, and cellular proliferation and differentiation processes. Selective breeding aiming to improve growth rate and/or body composition is accompanied by changes of the GH-IGF-I axis. Research aiming to elucidate the genetic and physiologic mechanism(s) underlying these changes may best use single-trait selection lines. Two such pig selection lines, one for growth rate and one for high lean content, were used in experiments to investigate the mechanisms of the GH-IGF-I axis change during selection. This contribution reviews the selection-related changes in the GH-IGF-I axis as the consequences of selection for whole body growth rate or body composition and effects on local tissue growth rate. A model explaining the observed effects and consequences for the pressure on the physiology is presented. In short, selection related demand for GH induces GH synthesis until a limit is reached. After that the pulsatile GH plasma profile changes, which may also affect expression profiles of genes regulating body composition.


Assuntos
Composição Corporal/genética , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Suínos/genética , Aumento de Peso/genética , Criação de Animais Domésticos , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Hormônio do Crescimento/sangue , Insulina/sangue , Periodicidade , RNA Mensageiro , Especificidade da Espécie , Fator de Transcrição Pit-1 , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA