RESUMO
Understanding immune responses to SARS-CoV-2 messenger RNA (mRNA) vaccines is of great interest, principally because of the poor knowledge about the mechanisms of protection. In the present study, we analyzed longitudinally B cell and T cell memory programs against the spike (S) protein derived from ancestral SARS-CoV-2 (Wuhan-1), B.1.351 (beta), B.1.617.2 (delta) and B.1.1.529 (omicron) variants of concern (VOCs) after immunization with an mRNA-based vaccine (Pfizer). According to the magnitude of humoral responses 3 months after the first dose, we identified high and low responders. Opposite to low responders, high responders were characterized by enhanced antibody-neutralizing activity, increased frequency of central memory T cells and durable S-specific CD8+ T cell responses. Reduced binding antibodies titers combined with long-term specific memory T cells that had distinct polyreactive properties were found associated with subsequent breakthrough with VOCs in low responders. These results have important implications for the design of new vaccines and new strategies for booster follow-up.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , RNA Mensageiro/genética , SARS-CoV-2 , VacinaçãoRESUMO
Recent improvements in cost-effectiveness of high-throughput technologies has allowed RNA sequencing of total transcriptomes suitable for evaluating the expression and regulation of circRNAs, a relatively novel class of transcript isoforms with suggested roles in transcriptional and post-transcriptional gene expression regulation, as well as their possible use as biomarkers, due to their deregulation in various human diseases. A limited number of integrated workflows exists for prediction, characterization, and differential expression analysis of circRNAs, none of them complying with computational reproducibility requirements. We developed Docker4Circ for the complete analysis of circRNAs from RNA-Seq data. Docker4Circ runs a comprehensive analysis of circRNAs in human and model organisms, including: circRNAs prediction; classification and annotation using six public databases; back-splice sequence reconstruction; internal alternative splicing of circularizing exons; alignment-free circRNAs quantification from RNA-Seq reads; and differential expression analysis. Docker4Circ makes circRNAs analysis easier and more accessible thanks to: (i) its R interface; (ii) encapsulation of computational tasks into docker images; (iii) user-friendly Java GUI Interface availability; and (iv) no need of advanced bash scripting skills for correct use. Furthermore, Docker4Circ ensures a reproducible analysis since all its tasks are embedded into a docker image following the guidelines provided by Reproducible Bioinformatics Project.
Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Circular/genética , RNA-Seq , Software , Animais , HumanosRESUMO
The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.
Assuntos
Hidróxido de Alumínio , Vacinas Meningocócicas , Adulto , Humanos , Interferons , Receptor 7 Toll-Like , Antivirais , Vacinas Conjugadas , Adjuvantes Imunológicos , Citocinas , Análise de SistemasRESUMO
Single-cell multi-omics is a rapidly evolving field, thanks to a fast technological improvement and the growing accuracy of dedicated computational tools for data analysis. Its importance is highlighted by the possibility to distinguish apparently identical cells based on their pattern of gene expression. In this review, the mostly used methodological pipelines for single-cell analysis, as well as the advantages and potential limitations of several analytical steps, are presented and discussed, with specific sections focusing on crucial parts of this procedure, their bioinformatic tools, as well as their advantages and potential drawbacks. The current bioinformatic approaches for T-cell receptor (TCR) reconstruction are also introduced, as well as a comparison of single-cell sequencing technologies. Critical points that may introduce analytical biases and potential inaccuracies in data interpretation are also highlighted.
Assuntos
Biologia Computacional , Análise de Célula Única , Biologia Computacional/métodos , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Linfócitos TRESUMO
Upon chronic antigen exposure, CD8+ T cells become exhausted, acquiring a dysfunctional state correlated with the inability to control infection or tumor progression. In contrast, stem-like CD8+ T progenitors maintain the ability to promote and sustain effective immunity. Adenovirus (Ad)-vectored vaccines encoding tumor neoantigens have been shown to eradicate large tumors when combined with anti-programmed cell death protein 1 (αPD-1) in murine models; however, the mechanisms and translational potential have not yet been elucidated. Here, we show that gorilla Ad vaccine targeting tumor neoepitopes enhances responses to αPD-1 therapy by improving immunogenicity and antitumor efficacy. Single-cell RNA sequencing demonstrated that the combination of Ad vaccine and αPD-1 increased the number of murine polyfunctional neoantigen-specific CD8+ T cells over αPD-1 monotherapy, with an accumulation of Tcf1+ stem-like progenitors in draining lymph nodes and effector CD8+ T cells in tumors. Combined T cell receptor (TCR) sequencing analysis highlighted a broader spectrum of neoantigen-specific CD8+ T cells upon vaccination compared to αPD-1 monotherapy. The translational relevance of these data is supported by results obtained in the first 12 patients with metastatic deficient mismatch repair (dMMR) tumors vaccinated with an Ad vaccine encoding shared neoantigens. Expansion and diversification of TCRs were observed in post-treatment biopsies of patients with clinical response, as well as an increase in tumor-infiltrating T cells with an effector memory signature. These findings indicate a promising mechanism to overcome resistance to PD-1 blockade by promoting immunogenicity and broadening the spectrum and magnitude of neoantigen-specific T cells infiltrating tumors.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Adenoviridae , Animais , Antígenos de Neoplasias/metabolismo , Humanos , Camundongos , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
Gene expression data is commonly used in vaccine studies to characterize differences between treatment groups or sampling time points. Group-wise comparisons of the transcriptional perturbations induced by vaccination have been applied extensively for investigating the mechanisms of action of vaccines. Such approaches, however, may not be sensitive enough for detecting changes occurring within a minority of the population under investigation or in single individuals. In this study, we developed a data analysis framework to characterize individual subject response profiles in the context of repeated measure experiments, which are typical of vaccine mode of action studies. Following the definition of the methodology, this was applied to the analysis of human transcriptome responses induced by vaccination with a subunit influenza vaccine. Results highlighted a substantial heterogeneity in how different subjects respond to vaccination. Moreover, the extent of transcriptional modulation experienced by each individual subject was found to be associated with the magnitude of vaccine-specific functional antibody response, pointing to a mechanistic link between genes involved in protein production and innate antiviral response. Overall, we propose that the improved characterization of the intersubject heterogeneity, enabled by our approach, can help driving the improvement and optimization of current and next-generation vaccines.
Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Transcriptoma , Adulto , Formação de Anticorpos , Biologia Computacional , Humanos , Vacinas contra Influenza/farmacologia , Influenza Humana/genética , Influenza Humana/imunologia , VacinaçãoRESUMO
Circular RNAs are highly stable molecules present in all eukaryotes generated by distinct transcript processing. We have exploited poly(A-) RNA-Seq data generated in our lab in MCF-7 breast cancer cells to define a compilation of exonic circRNAs more comprehensive than previously existing lists. Development of a novel computational tool, named CircHunter, allowed us to more accurately characterize circRNAs and to quantitatively evaluate their expression in publicly available RNA-Seq data from breast cancer cell lines and tumor tissues. We observed and confirmed, by ChIP analysis, that exons involved in circularization events display significantly higher levels of the histone post-transcriptional modification H3K36me3 than non-circularizing exons. This result has potential impact on circRNA biogenesis since H3K36me3 has been involved in alternative splicing mechanisms. By analyzing an Ago-HITS-CLIP dataset we also found that circularizing exons overlapped with an unexpectedly higher number of Ago binding sites than non-circularizing exons. Finally, we observed that a subset of MCF-7 circRNAs are specific to tumor versus normal tissue, while others can distinguish Luminal from other tumor subtypes, thus suggesting that circRNAs can be exploited as novel biomarkers and drug targets for breast cancer.
RESUMO
The aim of this survey was to describe the incidence, epidemiology, microbiology, risk factors and outcome of medical care related laboratory-confirmed bloodstream infections (LCBIs) observed during a twelve-month prospective study in a Paediatric Teaching Hospital in Turin, Italy. Inclusion criteria were clinical signs of sepsis and positivity of one or more of the following tests: blood culture, polymerase chain reaction for bacterial and fungal DNA on blood, and culture on intravascular device tips. In all, 140 episodes of sepsis were documented in 131 children: 37 (26.4%) were healthcare outpatient-associated, 91 (65.0%) healthcare-associated and 12 (8.6%) community-acquired. The overall incidence of healthcare-associated LCBIs was 13.6/1,000 hospitalized patients and incidence density 1.4/1,000 inpatient days. The overall mortality was 3.9%. Forty-seven (36.7%) episodes involved newborns and 107 (83.6%) episodes were observed in children with an indwelling central venous catheter. Coagulase-negative staphylococci (26.8%), Staphylococcus aureus (15.2%), Escherichia coli (8.7%) and Candida spp. (7.2%) were responsible for the majority of cases. 9.5% of S. aureus isolates were methicillin-resistant and 6.5% of Gram negatives were extended-spectrum beta-lactamase-producing. Incidence and epidemiology of medical care related LCBIs were similar to the existing literature data. LCBIs caused by antibiotic-resistant microorganisms were fewer and mortality rate was lower. Most of the LCBIs recorded involved newborns and oncological children.