Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 146: 105527, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056706

RESUMO

The Opinion of the Scientific Committee on Health, Environmental and Emerging Risks advises the European Commission on whether the uses of titanium dioxide in toys and toy materials can be considered to be safe in light of the identified exposure, and the classification of titanium dioxide as carcinogenic category 2 after inhalation. Four toy products including casting kits, chalk, powder paints and white colour pencils containing various amounts of TiO2 as colouring agent were evaluated for inhalation risks. For the oral route, childrens' lip gloss/lipstick, finger paint and white colour pencils were evaluated. When it can be demonstrated with high certainty that no ultrafine fraction is present in pigmentary TiO2 preparations used in toys and toy materials, safe use with no or negligible risk for all products considered is indicated based on the exposure estimations of this Opinion. However, if an ultrafine fraction is assumed to be present, safe use is not indicated, except for white colour pencils.


Assuntos
Corantes , Titânio , Criança , Humanos , Jogos e Brinquedos , Saúde Ambiental
2.
Small ; 19(21): e2207326, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828794

RESUMO

Physiologically-based kinetic (PBK) modeling is a valuable tool to understand the kinetics of nanoparticles (NPs) in vivo. However, estimating PBK parameters remains challenging and commonly requires animal studies. To develop predictive models to estimate PBK parameter values based on NP characteristics, a database containing PBK parameter values and corresponding NP characteristics is needed. As a first step toward this objective, this study estimates PBK parameters for gold NPs (AuNPs) and provides a comparison of two different NPs. Two animal experiments are conducted in which varying doses of AuNPs attached with polyethylene glycol (PEG) are administered intravenously to rats. The resulting Au concentrations are used to estimate PBK model parameters. The parameters are compared with PBK parameters previously estimated for poly(alkyl cyanoacrylate) NPs loaded with cabazitaxel and for LipImage 815. This study shows that a small initial database of PBK parameters collected for three NPs is already sufficient to formulate new hypotheses on NP characteristics that may be predictive of PBK parameter values. Further research should focus on developing a larger database and on developing quantitative models to predict PBK parameter values.


Assuntos
Ouro , Nanopartículas Metálicas , Ratos , Animais , Cinética , Polietilenoglicóis , Cianoacrilatos
3.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361846

RESUMO

Usage of injectable dermal fillers applied for aesthetic purposes has extensively increased over the years. As such, the number of related adverse reactions has increased, including patients showing severe complications such as product migration, topical swelling and inflammatory reactions of the skin. In order to understand the underlying molecular events of these adverse reactions we performed a genome-wide gene expression study on the multi-cell type human Phenion® Full-Thickness Skin Model exposed to five experimental hyaluronic acid (HA) preparations with increasing cross-linking degree, four commercial fillers from Perfectha®, and non-resorbable filler Bio-Alcamid®. In addition, we evaluated whether cross-linking degree or particle size of the HA-based fillers could be associated with the occurrence of adverse effects. In all cases, exposure to different HA fillers resulted in a clearly elevated gene expression of cytokines and chemokines related to acute inflammation as part of the foreign body response. Furthermore, for one experimental filler genes of OXPHOS complexes I-V were significantly down-regulated (adjusted p-value < 0.05), resulting in mitochondrial dysfunction which can be linked to over-expression of pro-inflammatory cytokines TNFα and IL-1ß and chemokine CCL2. Our hypothesis that cross-linking degree or particle size of the HA-based fillers is related to the biological responses induced by these fillers could only partially be confirmed for particle size. In conclusion, our innovative approach resulted in gene expression changes from a human 3D skin model exposed to dermal fillers that mechanistically substantiate aforementioned adverse reactions, and thereby adds to the weight of evidence that these fillers may induce inflammatory and fibrotic responses.


Assuntos
Preenchedores Dérmicos , Corpos Estranhos , Envelhecimento da Pele , Humanos , Ácido Hialurônico/farmacologia , Preenchedores Dérmicos/efeitos adversos , Transcriptoma , Materiais Biocompatíveis/efeitos adversos , Citocinas/genética
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806280

RESUMO

Resorbable tissue fillers for aesthetic purposes can induce severe complications including product migration, late swelling, and inflammatory reactions. The relation between product characteristics and adverse effects is not well understood. We hypothesized that the degree of cross-linking hyaluronic acid (HA) fillers was associated with the occurrence of adverse effects. Five experimental HA preparations similar to HA fillers were synthesized with an increasing degree of cross-linking. Furthermore, a series of commercial fillers (Perfectha®) was obtained that differ in degradation time based on the size of their particulate HA components. Cytotoxic responses and cytokine production by human THP-1-derived macrophages exposed to extracts of the evaluated resorbable HA fillers were absent to minimal. Gene expression analysis of the HA-exposed macrophages revealed the responses related to cell cycle control and immune reactivity. Our results could not confirm the hypothesis that the level of cross-linking in our experimental HA fillers or the particulate size of commercial HA fillers is related to the induced biological responses. However, the evaluation of cytokine induction and gene expression in macrophages after biomaterial exposure presents promising opportunities for the development of methods to identify cellular processes that may be predictive for biomaterial-induced responses in patients.


Assuntos
Preenchedores Dérmicos , Ácido Hialurônico , Materiais Biocompatíveis/efeitos adversos , Citocinas , Preenchedores Dérmicos/farmacologia , Humanos , Ácido Hialurônico/efeitos adversos , Macrófagos
5.
Regul Toxicol Pharmacol ; 125: 104982, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34214611

RESUMO

The Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) was requested by the European Commission (EC) to provide a scientific opinion on the safety of breast implants in relation to anaplastic large cell lymphoma (ALCL). There are several types of textured breast implants; surface textures of breast implants are not all manufactured in the same way, and breast implants with diverse surface textures may also present different benefits. The magnitude of the risk per type of textured implant is difficult to establish due to the low incidence of the breast implants associated anaplastic large cell lymphoma (BIA-ALCL). Therefore, risk assessments per implant type are needed. Overall SCHEER considers that there is a moderate weight of evidence for a causal relationship between textured breast implants and BIA-ALCL, particularly in relation to implants with an intermediate to high surface roughness.The pathogenic mechanisms are not fully elucidated; current hypotheses include genetic drivers, chronic inflammation resulting either from bacterial contamination, shell shedding of particulates, or shell surface characteristics leading to friction, or by implant associated reactive compounds. Reporting of new BIA-ALCL cases by the national clinical registries is critically important to obtain a better estimate of the risk of BIA-ALCL for patients with a breast implant.


Assuntos
Implantes de Mama/estatística & dados numéricos , Linfoma Anaplásico de Células Grandes/epidemiologia , Causalidade , Humanos , Medição de Risco , Fatores de Risco , Fatores de Tempo
6.
Regul Toxicol Pharmacol ; 126: 105046, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560169

RESUMO

The Cosmetic Regulation (EC) No 1223/2009 specifically covers the risk of nanomaterials used in cosmetic products. If there are concerns regarding the safety of a nanomaterial, the European Commission refers it to the SCCS for a scientific opinion. The Commission mandated the SCCS to identify the scientific basis for safety concerns that could be used as a basis for identifying and prioritising nanomaterials for safety assessment, and to revisit previous inconclusive SCCS opinions on nanomaterials to identify any concerns for potential risks to the consumer health. The SCCS Scientific Advice identified the key general aspects of nanomaterials that should raise a safety concern for a safety assessor/manager, so that the nanomaterial(s) in question could be subjected to safety assessment to establish safety to the consumer. The Advice also developed a list of the nanomaterials notified to the Commission for use in cosmetics in an order of priority for safety assessment, and revisited three previous inconclusive opinions on nanomaterials to highlight concerns over consumer safety that merited further safety assessment.


Assuntos
Qualidade de Produtos para o Consumidor/normas , Cosméticos/efeitos adversos , Nanoestruturas/efeitos adversos , Relação Dose-Resposta a Droga , Europa (Continente) , Humanos , Tamanho da Partícula , Medição de Risco , Solubilidade , Propriedades de Superfície
7.
Part Fibre Toxicol ; 16(1): 39, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660999

RESUMO

BACKGROUND: Engineered nanoparticles (NPs) have been shown to enhance allergic airways disease in mice. However, the influence of the different physicochemical properties of these particles on their adjuvant properties is largely unknown. Here we investigate the effects of chemical composition and redox activity of poorly soluble NPs on their adjuvant potency in a mouse model of airway hypersensitivity. RESULTS: NPs of roughly similar sizes with different chemical composition and redox activity, including CeO2, Zr-doped CeO2, Co3O4, Fe-doped Co3O4(using Fe2O3 or Fe3O4) and TiO2 NPs, all showed adjuvant activity. OVA induced immune responses following intranasal exposure of BALB/c mice to 0.02% OVA in combination with 200 µg NPs during sensitization (on day 1, 3, 6 and 8) and 0.5% OVA only during challenge (day 22, 23 and 24) were more pronounced compared to the same OVA treatment regime without NPs. Changes in OVA-specific IgE and IgG1 plasma levels, differential cell count and cytokines in bronchoalveolar lavage fluid (BALF), and histopathological detection of mucosa cell metaplasia and eosinophil density in the conducting airways were observed. Adjuvant activity of the CeO2 NPs was primarily mediated via the Th2 response, while that of the Co3O4 NPs was characterised by no or less marked increases in IgE plasma levels, BALF IL-4 and IL-5 concentrations and percentages of eosinophils in BALF and more pronounced increases in BALF IL-6 concentrations and percentages of lymphocytes in BALF. Co-exposure to Co3O4 NPs with OVA and subsequent OVA challenge also induced perivascular and peribronchiolar lymphoid cell accumulation and formation of ectopic lymphoid tissue in lungs. Responses to OVA combined with various NPs were not affected by the amount of doping or redox activity of the NPs. CONCLUSIONS: The findings indicate that chemical composition of NPs influences both the relative potency of NPs to exacerbate allergic airway sensitization and the type of immune response. However, no relation between the acellular redox activity and the observed adjuvant activity of the different NPs was found. Further research is needed to pinpoint the precise physiological properties of NPs and biological mechanisms determining adjuvant activity in order to facilitate a safe-by-design approach to NP development.


Assuntos
Pulmão/efeitos dos fármacos , Nanoestruturas/química , Nanoestruturas/toxicidade , Hipersensibilidade Respiratória/induzido quimicamente , Administração Intranasal , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Interleucinas/análise , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Oxirredução , Hipersensibilidade Respiratória/sangue , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Solubilidade
8.
Part Fibre Toxicol ; 15(1): 9, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382351

RESUMO

BACKGROUND: The use of engineered nanoparticles (NP) is widespread and still increasing. There is a great need to assess their safety. Newly engineered NP enter the market in a large variety; therefore safety evaluation should preferably be in a high-throughput fashion. In vitro screening is suitable for this purpose. TiO 2 NP exist in a large variety (crystal structure, coating and size), but information on their relative toxicities is scarce. TiO 2 NP may be inhaled by workers in e.g. paint production and application. In mice, inhalation of TiO 2 NP increases allergic reactions. Dendritic cells (DC) form an important part of the lung immune system, and are essential in adjuvant activity. The present study aimed to establish the effect of a variety of TiO 2 NP on DC maturation in vitro. Two NP of different crystal structure but similar in size, uncoated and from the same supplier, were evaluated for their adjuvant activity in vivo. METHODS: Immature DC were differentiated in vitro from human peripheral blood monocytes. Exposure effects of a series of fourteen TiO 2 NP on cell viability, CD83 and CD86 expression, and IL-12p40 and TNF-α production were measured. BALB/c mice were intranasally sensitized with ovalbumin (OVA) alone, OVA plus anatase TiO 2 NP, OVA plus rutile TiO 2 NP, and OVA plus Carbon Black (CB; positive control). The mice were intranasally challenged with OVA. OVA-specific IgE and IgG1 in serum, cellular inflammation in bronchoalveolar lavage fluid (BALF) and IL-4 and IL-5 production in draining bronchial lymph nodes were evaluated. RESULTS: All NP dispersions contained NP aggregates. The anatase NP and anatase/rutile mixture NP induced a higher CD83 and CD86 expression and a higher IL-12p40 production in vitro than the rutile NP (including coated rutile NP and a rutile NP of a 10-fold larger primary diameter). OVA-specific serum IgE and IgG1 were increased by anatase NP, rutile NP, and CB, in the order rutile

Assuntos
Células Dendríticas/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cristalização , Células Dendríticas/imunologia , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Interleucina-4/imunologia , Interleucina-5/imunologia , Pulmão/imunologia , Camundongos Endogâmicos BALB C , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície , Titânio/química
9.
Inhal Toxicol ; 30(7-8): 273-286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286672

RESUMO

Considerable differences in pulmonary responses have been observed in animals exposed to cerium dioxide nanoparticles via inhalation. These differences in pulmonary toxicity might be explained by differences in lung deposition, species susceptibility or physicochemical characteristics of the tested cerium dioxide nanoforms (i.e. same chemical substance, different size, shape, surface area or surface chemistry). In order to distinguish the relative importance of these different influencing factors, we performed a detailed analysis of the data from several inhalation studies with different exposure durations, species and nanoforms, namely published data on NM211 and NM212 (JRC repository), NanoAmor (commercially available) and our published and unpublished data on PROM (industry provided). Data were analyzed by comparing the observed pulmonary responses at similar external and internal dose levels. Our analyses confirm that rats are more sensitive to developing pulmonary inflammation compared to mice. The observed differences in responses do not result purely from differences in the delivered and retained doses (expressed in particle mass as well as surface area). In addition, the different nanoforms assessed showed differences in toxic potency likely due to differences in their physicochemical parameters. Primary particle and aggregate/agglomerate size distributions have a substantial impact on the deposited dose and consequently on the pulmonary response. However, in our evaluation size could not fully explain the difference observed in the analyzed studies indicating that the pulmonary response also depends on other physicochemical characteristics of the particles. It remains to be determined to what extent these findings can be generalized to other poorly soluble nanomaterials.

10.
Anal Bioanal Chem ; 406(16): 3853-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24390463

RESUMO

Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 µg Ti/g tissue agreed well.


Assuntos
Estruturas Animais/química , Espectrometria de Massas/métodos , Nanopartículas/análise , Titânio/análise , Animais , Laboratórios/normas , Masculino , Espectrometria de Massas/normas , Ratos , Ratos Wistar
11.
Part Fibre Toxicol ; 11: 18, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24725891

RESUMO

The increasing manufacture and use of products based on nanotechnology raises concerns for both workers and consumers. Various studies report induction of pulmonary inflammation after inhalation exposure to nanoparticles, which can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Each of these aspects can affect their toxicity, although it is largely unknown to what extent. The aim of the current review is to analyse published data on inhalation of nanoparticles to identify and evaluate the contribution of their physicochemical characteristics to the onset and development of pulmonary inflammation. Many physicochemical characteristics of nanoparticles affect their lung deposition, clearance, and pulmonary response that, in combination, ultimately determine whether pulmonary inflammation will occur and to what extent. Lung deposition is mainly determined by the physical properties of the aerosol (size, density, shape, hygroscopicity) in relation to airflow and the anatomy of the respiratory system, whereas clearance and translocation of nanoparticles are mainly determined by their geometry and surface characteristics. Besides size and chemical composition, other physicochemical characteristics influence the induction of pulmonary inflammation after inhalation. As some nanoparticles dissolve, they can release toxic ions that can damage the lung tissue, making dissolution rate an important characteristic that affects lung inflammation. Fibre-shaped materials are more toxic to the lungs compared to spherical shaped nanoparticles of the same chemical composition. In general, cationic nanoparticles are more cytotoxic than neutral or anionic nanoparticles. Finally, surface reactivity correlates well with observed pulmonary inflammation. With all these characteristics affecting different stages of the events leading to pulmonary inflammation, no unifying dose metric could be identified to describe pulmonary inflammation for all nanomaterials, although surface reactivity might be a useful measure. To determine the extent to which the various characteristics influence the induction of pulmonary inflammation, the effect of these characteristics on lung deposition, clearance, and pulmonary response should be systematically evaluated. The results can then be used to facilitate risk assessment by categorizing nanoparticles according to their characteristics.


Assuntos
Nanoestruturas/química , Nanoestruturas/toxicidade , Pneumonia/induzido quimicamente , Administração por Inalação , Poluentes Atmosféricos/toxicidade , Animais , Humanos , Pulmão/metabolismo , Tamanho da Partícula , Pneumonia/patologia , Solubilidade , Emissões de Veículos/toxicidade
12.
Part Fibre Toxicol ; 11: 30, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24993397

RESUMO

OBJECTIVE: The aim of this study was to obtain kinetic data that can be used in human risk assessment of titanium dioxide nanomaterials. METHODS: Tissue distribution and blood kinetics of various titanium dioxide nanoparticles (NM-100, NM-101, NM-102, NM-103, and NM-104), which differ with respect to primary particle size, crystalline form and hydrophobicity, were investigated in rats up to 90 days post-exposure after oral and intravenous administration of a single or five repeated doses. RESULTS: For the oral study, liver, spleen and mesenteric lymph nodes were selected as target tissues for titanium (Ti) analysis. Ti-levels in liver and spleen were above the detection limit only in some rats. Titanium could be detected at low levels in mesenteric lymph nodes. These results indicate that some minor absorption occurs in the gastrointestinal tract, but to a very limited extent.Both after single and repeated intravenous (IV) exposure, titanium rapidly distributed from the systemic circulation to all tissues evaluated (i.e. liver, spleen, kidney, lung, heart, brain, thymus, reproductive organs). Liver was identified as the main target tissue, followed by spleen and lung. Total recovery (expressed as % of nominal dose) for all four tested nanomaterials measured 24 h after single or repeated exposure ranged from 64-95% or 59-108% for male or female animals, respectively. During the 90 days post-exposure period, some decrease in Ti-levels was observed (mainly for NM-100 and NM-102) with a maximum relative decrease of 26%. This was also confirmed by the results of the kinetic analysis which revealed that for each of the investigated tissues the half-lifes were considerable (range 28-650 days, depending on the TiO(2)-particle and tissue investigated). Minor differences in kinetic profile were observed between the various particles, though these could not be clearly related to differences in primary particle size or hydrophobicity. Some indications were observed for an effect of crystalline form (anatase vs. rutile) on total Ti recovery. CONCLUSION: Overall, the results of the present oral and IV study indicates very low oral bioavailability and slow tissue elimination. Limited uptake in combination with slow elimination might result in the long run in potential tissue accumulation.


Assuntos
Nanopartículas Metálicas , Titânio/administração & dosagem , Titânio/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Cristalização , Feminino , Interações Hidrofóbicas e Hidrofílicas , Injeções Intravenosas , Fígado/metabolismo , Pulmão/metabolismo , Linfonodos/metabolismo , Masculino , Tamanho da Partícula , Ratos Wistar , Medição de Risco , Baço/metabolismo , Distribuição Tecidual , Titânio/toxicidade
13.
Part Fibre Toxicol ; 11: 21, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24885556

RESUMO

BACKGROUND: Nanosilver is used in a variety of medical and consumer products because of its antibacterial activity. This wide application results in an increased human exposure. Knowledge on the systemic toxicity of nanosilver is, however, relatively scarce. In a previous study, the systemic toxicity of 20 nm silver nanoparticles (Ag-NP) was studied in a 28-day repeated-dose toxicity study in rats. Ag-NP were intravenously administered with a maximum dose of 6 mg/kg body weight (bw)/day. Several immune parameters were affected: reduced thymus weight, increased spleen weight and spleen cell number, a strongly reduced NK cell activity, and reduced IFN-γ production were observed. METHODS: Prompted by these affected immune parameters, we wished to assess exposure effects on the functional immune system. Therefore, in the present study the T-cell dependent antibody response (TDAR) to keyhole limpet hemocyanin (KLH) was measured in a similar 28-day intravenous repeated-dose toxicity study. In addition, a range of immunological parameters was measured. Data obtained using the benchmark dose (BMD) approach were analyzed by fitting dose-response models to the parameters measured. RESULTS: A reduction in KLH-specific IgG was seen, with a lowest 5% lower confidence bound of the BMD (BMDL) of 0.40 mg/kg bw/day. This suggests that Ag-NP induce suppression of the functional immune system. Other parameters sensitive to Ag-NP exposure were in line with our previous study: a reduced thymus weight with a BMDL of 0.76 mg/kg bw/day, and an increased spleen weight, spleen cell number, and spleen cell subsets, with BMDLs between 0.36 and 1.11 mg/kg bw/day. Because the effects on the spleen are not reflected by increased KLH-specific IgG, they, however, do not suggest immune stimulation. CONCLUSIONS: Intravenous Ag-NP administration in a 28-day repeated-dose toxicity study induces suppression of the functional immune system. This finding underscores the importance to study the TDAR to evaluate immunotoxicity and not to rely solely on measuring immune cell subsets.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/imunologia , Prata/toxicidade , Animais , Formação de Anticorpos/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Citocinas/biossíntese , Testes Imunológicos de Citotoxicidade , Relação Dose-Resposta a Droga , Eritrócitos/metabolismo , Hemocianinas , Hemoglobinas/metabolismo , Injeções Intravenosas , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Baço/citologia , Baço/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
14.
Regul Toxicol Pharmacol ; 65(1): 119-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23200793

RESUMO

In recent years, an increasing number of applications and products containing or using nanomaterials have become available. This has raised concerns that some of these materials may introduce new risks for humans or the environment. A clear definition to discriminate nanomaterials from other materials is prerequisite to include provisions for nanomaterials in legislation. In October 2011 the European Commission published the 'Recommendation on the definition of a nanomaterial', primarily intended to provide unambiguous criteria to identify materials for which special regulatory provisions might apply, but also to promote consistency on the interpretation of the term 'nanomaterial'. In this paper, the current status of various regulatory frameworks of the European Union with regard to nanomaterials is described, and major issues relevant for regulation of nanomaterials are discussed. This will contribute to better understanding the implications of the choices policy makers have to make in further regulation of nanomaterials. Potential issues that need to be addressed and areas of research in which science can contribute are indicated. These issues include awareness on situations in which nano-related risks may occur for materials that fall outside the definition, guidance and further development of measurement techniques, and dealing with changes during the life cycle.


Assuntos
Política de Saúde/legislação & jurisprudência , Nanoestruturas , Formulação de Políticas , União Europeia , Humanos , Nanoestruturas/efeitos adversos , Nanotecnologia/legislação & jurisprudência , Medição de Risco/legislação & jurisprudência
15.
Toxicol Appl Pharmacol ; 263(1): 89-101, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22705593

RESUMO

The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Células 3T3-L1/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/química , Glutationa/análise , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Dióxido de Silício/administração & dosagem
16.
Drug Deliv Transl Res ; 12(9): 2042-2047, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908133

RESUMO

Nanotechnologies enable great opportunities for the development and use of innovative (nano)medicines. As is common for scientific and technical developments, recognized safety evaluation methods for regulatory purposes are lagging behind. The specific properties responsible for the desired functioning also hamper the safety evaluation of such products. Pharmacokinetics determination of the active pharmaceutical ingredient as well as the nanomaterial component is crucial. Due to their particulate nature, nanomedicines, similar to all nanomaterials, are primarily removed from the circulation by phagocytizing cells that are part of the immune system. Therefore, the immune system can be potentially a specific target for adverse effects of nanomedicines, and thus needs special attention during the safety evaluation. This DDTR special issue on the results of the REFINE project on a regulatory science framework for nanomedical products presents a highly valuable body of knowledge needed to address regulatory challenges and gaps in currently available testing methods for the safety evaluation of nanomedicines.


Assuntos
Nanomedicina , Nanoestruturas , Nanomedicina/métodos , Nanoestruturas/efeitos adversos , Nanotecnologia
17.
Drug Deliv Transl Res ; 12(9): 2114-2131, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35426570

RESUMO

Biodistribution of nanoencapsulated bioactive compounds is primarily determined by the size, shape, chemical composition and surface properties of the encapsulating nanoparticle, and, thus, less dependent on the physicochemical properties of the active pharmaceutical ingredient encapsulated. In the current work, we aimed to investigate the impact of formulation type on biodistribution profile for two clinically relevant nanoformulations. We performed a comparative study of biodistribution in healthy rats at several dose levels and durations up to 14-day post-injection. The studied nanoformulations were nanostructured lipid carriers incorporating the fluorescent dye IR780-oleyl, and polymeric nanoparticles containing the anticancer agent cabazitaxel. The biodistribution was approximated by quantification of the cargo in blood and relevant organs. Several clear and systematic differences in biodistribution were observed, with the most pronounced being a much higher (more than 50-fold) measured concentration ratio between cabazitaxel in all organs vs. blood, as compared to IR780-oleyl. Normalized dose linearity largely showed opposite trends between the two compounds after injection. Cabazitaxel showed a higher brain accumulation than IR780-oleyl with increasing dose injected. Interestingly, cabazitaxel showed a notable and prolonged accumulation in lung tissue compared to other organs. The latter observations could warrant further studies towards a possible therapeutic indication within lung and conceivably brain cancer for nanoformulations of this highly antineoplastic compound, for which off-target toxicity is currently dose-limiting in the clinic.


Assuntos
Antineoplásicos , Nanopartículas , Nanoestruturas , Animais , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Polímeros , Ratos , Distribuição Tecidual
18.
NanoImpact ; 22: 100313, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559970

RESUMO

Copper oxide nanoparticles (CuO NPs) have previously been shown to cause dose-dependent pulmonary toxicity following inhalation. Here, CuO NPs (10 nm), coated with polyethylenimine (PEI) or ascorbate (ASC) resulting in positively or negatively charged NPs, respectively, were evaluated. Rats were exposed nose-only to similar exposure dose levels of ASC or PEI coated CuO NPs for 5 consecutive days. On day 6 and day 27 post-exposure, pulmonary toxicity markers in bronchoalveolar lavage fluid (BALF), lung histopathology and genome-wide transcriptomic changes in lungs, were assessed. BALF analyses showed a dose-dependent pulmonary inflammation and cell damage, which was supported by the lung histopathological findings of hypertrophy/hyperplasia of bronchiolar and alveolar epithelium, interstitial and alveolar inflammation, and paracortical histiocytosis in mediastinal lymph nodes for both types of CuO NPs. Transcriptomics analysis showed that pathways related to inflammation and cell proliferation were significantly activated. Additionally, we found evidence for the dysregulation of drug metabolism-related genes, especially in rats exposed to ASC-coated CuO NPs. Overall, no differences in the type of toxic effects and potency between the two surface coatings could be established, except with respect to the (regional) dose that initiates bronchiolar and alveolar hypertrophy. This disproves our hypothesis that differences in surface coatings affect the pulmonary toxicity of CuO NPs.


Assuntos
Pneumopatias , Nanopartículas , Animais , Cobre/toxicidade , Hipertrofia , Inflamação , Exposição por Inalação/efeitos adversos , Nanopartículas/toxicidade , Óxidos , Ratos , Transcriptoma
19.
Part Fibre Toxicol ; 7(1): 37, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21126342

RESUMO

BACKGROUND: Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. RESULTS: Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. CONCLUSION: Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Compostos de Ouro/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Fenômenos Químicos , Citocinas/metabolismo , Intubação Intratraqueal , Contagem de Leucócitos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/patologia , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Neutrófilos/patologia , Tamanho da Partícula , Quartzo/toxicidade , Ratos , Propriedades de Superfície , Testes de Toxicidade
20.
Artigo em Inglês | MEDLINE | ID: mdl-32266791

RESUMO

Various nanomedicinal products (NMPs) have been reported to induce an adverse immune response, which may be related to their tendency to accumulate in or target cells of the immune system. Therefore, before their market authorization, NMPs should be thoroughly evaluated for their immunotoxic potential. Nonclinical regulatory immunotoxicity testing of nonbiological medicinal products, including NMPs, is currently performed by following the guideline S8 "Immunotoxicity Studies for Human Pharmaceuticals" of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). However, this guideline does not cover all the immunotoxicity endpoints reported for NMPs in the literature, such as complement activation related pseudo allergy, hypersensitivity and immunosuppression. In addition, ICH-S8 does not provide any nanospecific testing considerations, which is important given their tendency to interfere with many commonly used toxicity assays. We therefore propose a nonclinical regulatory immunotoxicity assessment strategy, which considers the immunotoxicity endpoints currently missing in the ICH-S8. We also list the known pitfalls related to the testing of NMPs and how to tackle them. Next to defining the relevant physicochemical and pharmacokinetic properties of the NMP and its intended use, the proposed strategy includes an in vitro assay battery addressing various relevant immunotoxicity endpoints. A weight of evidence evaluation of this information can be used to shape the type and design of further in vivo investigations. The final outcome of the immunotoxicity assessment can be included in the overall risk assessment of the NMP and provide alerts for relevant endpoints to address during clinical investigation. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.


Assuntos
Sistema Imunitário , Nanomedicina , Nanoestruturas , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Nanomedicina/legislação & jurisprudência , Nanomedicina/normas , Nanoestruturas/efeitos adversos , Nanoestruturas/normas , Nanoestruturas/toxicidade , Medição de Risco , Testes de Toxicidade , Toxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA