Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Exp Med Biol ; 972: 17-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27677275

RESUMO

Since the 1990s, the threat of influenza viruses to veterinary and human public health has increased. This coincides with the larger global populations of poultry, pigs, and people and with changing ecological factors. These factors include the redistribution of the human population to cities, rapid mass transportation of people and infectious agents, increased global land use, climate change, and possible changes in viral ecology that perpetuate highly pathogenic influenza viruses in the aquatic bird reservoir. The emergence of H5N1, H7N9, and H9N2 subtypes of influenza A virus and the increased genetic exchange among influenza viruses in wild aquatic birds, domestic poultry, swine, and humans pose a continuing threat to humanity. Here we consider the fundamental and practical knowledge of influenza A viruses at the human-animal interfaces to facilitate the development of novel control strategies and modified agricultural practices that will reduce or prevent interspecies transmission.


Assuntos
Aves , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/transmissão , Influenza Humana/transmissão , Animais , Animais Selvagens , Doenças Transmissíveis Emergentes/virologia , Variação Genética , Hemaglutininas , Humanos , Vírus da Influenza A/genética , Influenza Aviária/prevenção & controle , Influenza Humana/prevenção & controle , Mamíferos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Pandemias , Ligação Proteica , Virulência , Zoonoses
2.
Avian Dis ; 56(4 Suppl): 1034-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23402132

RESUMO

Sardinia is a Mediterranean island with a long geological history, leading to a separation process from continental Europe during the Miocene. As a consequence, in this insular habitat some wild bird species developed endemic forms, some of which are currently threatened. The aim of this study is to evaluate the possible animal health risk associated with a potential avian influenza virus (AIV) circulation in Sardinian wild bird populations. Overall, 147 cloacal swabs were sampled in the Sardinia region from June 2009 to September 2011. Samples were obtained from 12 taxonomic orders, including 16 families and 40 species of birds. Based on the endangered host status or on the ecology of the host-virus interaction, samples were categorized into three groups of species: 1) endemic, endangered, or both (17 species); 2) potential reservoir (21 species); and 3) potential spillover (two species). Cloacal swabs were tested by reverse transcription (RT)-PCR for influenza A virus matrix gene amplification. Forty-one serum samples were tested by nucleoprotein-enzyme-linked immunosorbent assay (NP-ELISA) for antibodies against influenza A virus nucleoprotein and by hemagglutination inhibition assay for detection of seropositivity against H5 and H7 AIV subtypes. No cloacal swabs tested RT-PCR positive for AIV, whereas two weak seropositive results were detected by NP-ELISA in a mallard (Anas platyrhynchos) and in a yellow-legged gull (Larus michahellis). The low or absent AIV circulation detected in Sardinia's wild birds during the study suggests a naïve status in these avian populations. These data provide new information on AIV circulation in Sardinia's wild birds that could be applied to implement conservation strategies for threatened species.


Assuntos
Aves/classificação , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Influenza Aviária/epidemiologia , Animais , Influenza Aviária/prevenção & controle , Itália/epidemiologia , Vigilância da População , DNA Polimerase Dirigida por RNA
5.
J Wildl Dis ; 55(1): 158-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235085

RESUMO

Swine influenza viruses (SIVs) have been repeatedly demonstrated to circulate in wild boar ( Sus scrofa) populations, whereas no evidence of exposure to avian influenza viruses (AIVs) has been described in wild boar. To better understand how different environments may influence the ecology of influenza A viruses (IAVs) in wild suid populations, we examined biologic samples of wild boars from two study areas represented by an upland (UL) and a wetland (WL) in northern and central Italy, respectively. Serum samples were collected from 388 wild boars sampled in the UL, whereas both a serum sample and a nasal swab were obtained from each of 35 wild boars sampled in the WL. Twenty of 388 (5.2%) sera from the UL were positive by enzyme-linked immunosorbent assay for the presence of antibodies against influenza A nucleoprotein and some of these samples showed antibodies by hemagglutination inhibition to SIVs of H1N1 (1/20), H1N2 (10/20), and H3N2 (1/20) antigenic subtypes. No IAV-seropositive wild boar was detected in the WL, although one of 35 animals was found to be IAV-positive by both a reverse transcriptase PCR and a real-time reverse transcriptase PCR. We hypothesize an SIV exposure for IAV-seropositive wild boars occupying the UL, whereas a possible AIV spillover from aquatic bird species-natural reservoirs of IAVs-to wild boars in the WL cannot be ruled out. Further research is needed to better understand the role played by wild boars in IAV ecology in Mediterranean habitats.


Assuntos
Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/veterinária , Sus scrofa/sangue , Animais , Vírus da Influenza A/isolamento & purificação , Itália/epidemiologia , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Estudos Soroepidemiológicos
6.
PLoS One ; 9(6): e100859, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24972026

RESUMO

BACKGROUND: Wild aquatic birds, reservoir of low-pathogenicity (LP) avian influenza viruses (AIVs), congregate in huge numbers in Western Siberia wetlands, where major intra- and inter-continental bird flyways overlap. In 2005 and 2006, highly pathogenic (HP) AIV H5N1 epizootics affected wild and domestic birds in the Novosibirsk Region. In 2012, we evaluated AIV persistence in Siberian natural and anthropic ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: In Novosibirsk Region, 166 wild birds ecologically linked to aquatic environments and 152 domestic waterfowl were examined for AIV isolation in embryonating chicken eggs. Biological samples were obtained by integrating the conventional cloacal swab collection with the harvesting of samples from birds' plumage. Haemagglutinating allantoic fluids were further characterized by serological and molecular methods. In August-September 2012, 17 AIVs, including three H3N8, eight H4N6, two H4N?, one H2N?, one H?N2, and two unsubtyped LPAIVs, were isolated from 15 wild ducks. Whereas comparable proportions of wild Anseriformes (n.118) tested virus isolation (VI)-positive from cloaca and feathers (5.9% vs 8.5%) were detected, the overall prevalence of virus isolation, obtained from both sampling methods, was 2.4 times higher than that calculated on results from cloacal swab examination only (14.4% vs 5.9%). Unlike previously described in this area, the H4N6 antigenic subtype was found to be the prevalent one in 2012. Both cloacal and feather samples collected from domestic waterfowl tested VI-negative. CONCLUSION/SIGNIFICANCE: We found lack of evidence for the H5N1 HPAIV circulation, explainable by the poor environmental fitness of HPAIVs in natural ecosystems. Our LPAIV isolation data emphasise the importance of Siberia wetlands in influenza A virus ecology, providing evidence of changes in circulation dynamics of HN antigenic subtypes harboured in wild bird reservoirs. Further studies of isolates, based on bioinformatic approaches to virus molecular evolution and phylogenesis, will be needed to better elucidate mechanisms involved in AIV perpetuation in this area.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Áreas Alagadas , Animais , Aves , Sibéria
7.
Vet Microbiol ; 170(3-4): 418-24, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24690373

RESUMO

We investigated the circulation dynamics of low pathogenic avian influenza viruses (LPAIVs) in the mallard (Anas platyrhynchos) reservoir in Italy. In particular, we evaluated the temporal distribution of virologic findings by combining virus isolation data with a new population genetic-based study approach. Thus, during 11 consecutive sampling periods (wintering periods between 1993/94 and 2003/04), categorised into 40 sampling sub-periods, cloacal swab samples were collected from 996 wild and 16 captive-reared mallards, to be screened by RT-PCR before attempting influenza A virus isolation in embryonated eggs. Forty-eight LPAIVs were isolated from wild mallards and antigenically characterised by haemagglutination-inhibition and neuraminidase-inhibition assays. When considering LPAIV antigenic subtypes in which more than one mallard tested virus isolation positive (H1N1, n. 22; H2N3, n. 2; H5N3, n. 2; H6N5, n. 3; H6N8, n. 2; H7N3, n. 3; H11N6, n. 5), at least two birds infected with a specific HN subtype clustered within one same sampling sub-period. In the context of the novel population genetic approach, total DNA was extracted from a subset of 16 captive-reared and 65 wild ducks (2000/01 and 2001/02 sampling periods) to assess genetic diversity by amplified fragment length polymorphisms (AFLP) markers. Analyses of AFLP results showed that captive-reared mallards clustered together, whereas two main independent clusters characterised the distribution pattern of most wild mallards. Within this subset of samples, nearly identical H7N3 LPAIV strains were isolated from two wild mallards belonging to the same genetic cluster. Blood sera were also collected from the above subset of mallards and examined for antibodies to the homologous H7N3 virus strain. Four out of six wild mallards testing H7N3-seropositive by haemagglutination-inhibition assay (2001/02 period) belonged to the genetic cluster including H7N3 virus shedding ducks. Overall, our data raise the possibility of an enhanced transmission and circulation of LPAIVs in genetic or social groups of wild mallards, gathered in flocks possibly related by parentage and/or geographic origin.


Assuntos
Patos/genética , Variação Genética , Vírus da Influenza A/fisiologia , Influenza Aviária/transmissão , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Animais Selvagens/genética , Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Predisposição Genética para Doença , Genética Populacional , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Itália
8.
Influenza Other Respir Viruses ; 8(3): 367-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373385

RESUMO

OBJECTIVES: To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. DESIGN: Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. SAMPLE: Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. SETTING: Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. MAIN OUTCOME MEASURES: Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. RESULTS AND CONCLUSIONS: Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Doenças dos Suínos/imunologia , Vaccinia virus/genética , Animais , Proteção Cruzada , Feminino , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos C57BL , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vaccinia virus/metabolismo
9.
ISRN Vet Sci ; 2013: 601732, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167732

RESUMO

Land-based birds, belonging to Galliformes order are considered to be potential intermediaries in the emergence of new strains of influenza A viruses (AIVs), but the viral circulation in these birds remains largely unknown. To gain insights into the circulation of AIV in the wild Galliformes populations in Italian Alps, we conducted a virological survey on rock partridge (Alectoris graeca saxatilis) belonging to Phasianidae family and on tetraonids including rock ptarmigan (Lagopus mutus helveticus) and black grouse (Tetrao tetrix tetrix). In 2003 and 2004, during the hunting seasons, 79 wild Galliformes, categorised into age and sex classes, were hunted in the Sondrio Province (Central Alps). Cloacal swabs were collected from 11 rock partridges and from 68 tetraonids including 23 alpine rock ptarmigans and 45 black grouses. We tested cloacal swabs by a high sensitive reverse transcription- (RT-) PCR detecting the matrix gene of AIV. No AIV was detected in the investigated samples, thus, suggesting the lack of AIV circulation in these relict populations in the study period. In terms of threatened species conservation, during wildlife management activities, it is very important to exclude the introduction of AIV-carrier birds in shared territories, a fact representing a health risk for these populations.

10.
PLoS One ; 8(2): e57576, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469029

RESUMO

BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs) emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs) in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm) virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs) and 379 control subjects (Cs), not exposed to pig herds, were tested by haemagglutination inhibition (HI) assay against selected SIVs belonging to H1N1 (swH1N1), H1N2 (swH1N2) and H3N2 (swH3N2) subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes). Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs) and after (n. 39 SWs; n. 145 Cs) the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively). Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively). No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4%) and swH3N2 (51.2 vs. 55.4%) viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001) whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed at early detection and control of SIVs with pandemic potential in humans.


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Imunidade/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Exposição Ocupacional/estatística & dados numéricos , Pandemias/estatística & dados numéricos , Suínos/virologia , Adolescente , Adulto , Idoso , Animais , Antígenos Virais/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N2/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estações do Ano , Adulto Jovem
11.
PLoS One ; 5(6): e11315, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20593026

RESUMO

Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription-polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system.


Assuntos
Patos/virologia , Asseio Animal , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Animais , Vírus da Influenza A/genética , Influenza Aviária/virologia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA