Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 116(22): 225302, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314723

RESUMO

We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.

2.
Phys Rev Lett ; 115(15): 157201, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550747

RESUMO

In integrable many-particle systems, it is widely believed that the stationary state reached at late times after a quantum quench can be described by a generalized Gibbs ensemble (GGE) constructed from their extensive number of conserved charges. A crucial issue is then to identify a complete set of these charges, enabling the GGE to provide exact steady-state predictions. Here we solve this long-standing problem for the case of the spin-1/2 Heisenberg chain by explicitly constructing a GGE which uniquely fixes the macrostate describing the stationary behavior after a general quantum quench. A crucial ingredient in our method, which readily generalizes to other integrable models, are recently discovered quasilocal charges. As a test, we reproduce the exact postquench steady state of the Néel quench problem obtained previously by means of the Quench Action method.

3.
Phys Rev Lett ; 113(11): 117202, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25260002

RESUMO

We study quenches in integrable spin-1/2 chains in which we evolve the ground state of the antiferromagnetic Ising model with the anisotropic Heisenberg Hamiltonian. For this nontrivially interacting situation, an application of the first-principles-based quench-action method allows us to give an exact description of the postquench steady state in the thermodynamic limit. We show that a generalized Gibbs ensemble, implemented using all known local conserved charges, fails to reproduce the exact quench-action steady state and to correctly predict postquench equilibrium expectation values of physical observables. This is supported by numerical linked-cluster calculations within the diagonal ensemble in the thermodynamic limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA