Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 187: 513-526, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863773

RESUMO

Nitrate (NO3-) leaching from farmland remains the predominant source of nitrogen (N) loads to European ground- and surface water. As soil mineral N content at harvest is often high and may increase by mineralisation from crop residues and soil organic matter, it is critical to understand which post-harvest management measures can be taken to restrict the average NO3- concentration in ground- and surface waters below the norm of 50 mg l-1. Nitrate leaching was simulated with the EU-rotate_N model on a silty and a sandy soil following the five main arable crops cultivated in Flanders: cut grassland, silage maize, potatoes, sugar beets and winter wheat, in scenarios of optimum fertilisation with and without post-harvest measures. We compared the average NO3- concentration in the leaching water at a depth of 90 cm in these scenarios after dividing it by a factor of 2.1 to include natural attenuation processes occurring during transport towards ground- and surface water. For cut grassland, the average attenuated NO3- concentration remained below the norm on both soils. In order to comply with the Nitrates Directive, post-harvest measures seemed to be necessary on sandy soils for the four other crops and on silty soils for silage maize and for potatoes. Successful measures appeared to be the early sowing of winter crops after harvesting winter wheat, the undersowing of grass in silage maize and the removal of sugar beet leaves. Potatoes remained a problematic crop as N uptake by winter crops was insufficient to prevent excessive NO3- leaching. For each crop, maximum levels of soil mineral N content at harvest were proposed, both with and without additional measures, which could be used in future nutrient legislation. The approach taken here could be upscaled from the field level to the subcatchment level to see how different crops could be arranged within a subcatchment to permit the cultivation of problem crops without adversely affecting the water quality in such a subcatchment.


Assuntos
Monitoramento Ambiental/legislação & jurisprudência , Modelos Teóricos , Nitratos/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Agricultura/métodos , Simulação por Computador , Produtos Agrícolas/crescimento & desenvolvimento , Europa (Continente) , Humanos , Estações do Ano
2.
J Environ Manage ; 197: 338-350, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28402916

RESUMO

We investigated the potential of C-rich byproducts to replace wood chips as bulking agent (BA) during composting. The impact of these alternatives on the composting process and on compost stability and characteristics was assessed. Three BA (chopped heath biomass and spent growth media used in strawberry and tomato cultivation) were used for processing leek residues in windrow composting. All BA resulted in stable composts with an organic matter (OM) content suitable for use as soil amendment. Using chopped heath biomass led to high pile temperatures and OM degradation and a nutrient-poor compost with high C/P ratio appropriate for increasing soil organic carbon content in P-rich soils. Spent substrates can replace wood chips, however, due to their dense structure and lower biodegradation potential, adding a more coarse BA is required. Generally, the nutrient content of the composts with growth media was higher than the composts with wood chips and chopped heath biomass.


Assuntos
Biodegradação Ambiental , Eliminação de Resíduos , Madeira , Biomassa , Carbono , Solo
3.
Waste Manag ; 113: 132-144, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531661

RESUMO

Agriculture is estimated to generate about 700 million tons of waste annually in the EU. Novel valorization technologies are developing continuously to recover and recycle valuable compounds and nutrients from waste materials. To close the nutrient loop, low-value agri-food wastes, co-products and by-products (AFWCBs) produced during the valorization process, need to be returned to the soil. However, knowledge on their reaction in soils that is needed to allow efficient and environmentally sound recycling is largely lacking. To this end, we set up a series of laboratory incubation experiments using 10 AFWCBs including insect frass residues made from three different feedstocks, anaerobic digestates from two feedstocks, potato-pulp, rice bran compost, duckweed and two reference crop residues (wheat straw and sugar beet) and measured net N release, C mineralization, dehydrogenase activity (DHA), microbial biomass C (MBC) and community structure. The suppressing potential of frasses and digestates against Rhizoctonia solani was determined using bean. The digestates released the highest net mineral N (50-70%) followed by rice bran compost (55%) and duckweed (30%), while frass made from general food waste and potato-pulp immobilized N like the reference straw for 91 days after incubation. All AFWCBs except digestates significantly increased MBC compared to the control while frasses, potato-pulp and duckweed increased DHA. Frasses and digestates significantly suppressed the development of Rhizoctonia solani in bean plants. AFWCBs from emerging valorizing technologies have the potential to improve microbial activities, C sequestration and may play a significant role in closing the nutrient loop.


Assuntos
Eliminação de Resíduos , Solo , Agricultura , Alimentos , Resíduos/análise
4.
Waste Manag ; 48: 181-192, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470827

RESUMO

Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture.


Assuntos
Agricultura/métodos , Solo , Agricultura/economia , Agricultura/legislação & jurisprudência , Bélgica , Dinamarca , França , Alemanha , Esterco , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA