Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 32(11): 2226-2234, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30069944

RESUMO

The beneficial effects of isothiocyanate-based compounds, as well as their safety, have been shown in neuropathological disorders, such as neuropathic pain. Aim of the present work was to study the efficacy of the glucosinolate glucoraphanin (GRA) and the derived isothiocyanate sulforaphane (SFN), secondary metabolites occurring exclusively in Brassicales, on chemotherapy-induced neuropathic pain. Mice were repeatedly treated with oxaliplatin (2.4 mg kg-1 ip) for 14 days to induce neuropathic pain. GRA and SFN effects were evaluated after a single administration on Day 15 or after a daily repeated oral and subcutaneous treatment starting from the first day of oxaliplatin injection until the 14th day. Single subcutaneous and oral administrations of GRA (4.43-119.79 µmol kg-1 ) or SFN (1.33-13.31 µmol kg-1 ) reduced neuropathic pain in a dose-dependent manner. The repeated administration of GRA and SFN (respectively 13.31 and 4.43 µmol kg-1 ) prevented the chemotherapy-induced neuropathy. The co-administration of GRA and SFN in mixture with the H2 S binding molecule, haemoglobin, abolished their pain-relieving effect, which was also reverted by pretreating the animals with the selective blocker of Kv7 potassium channels, XE991. GRA and SFN reduce neuropathic pain by releasing H2 S and modulating Kv7 channels and show a protective effect on the chemotherapy-induced neuropathy.


Assuntos
Glucosinolatos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Imidoésteres/farmacologia , Isotiocianatos/farmacologia , Canal de Potássio KCNQ1/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Compostos Organoplatínicos/efeitos adversos , Animais , Antineoplásicos/efeitos adversos , Masculino , Camundongos , Neuralgia/induzido quimicamente , Oxaliplatina , Oximas , Sulfóxidos
2.
Bioorg Med Chem ; 23(1): 80-8, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25497964

RESUMO

4(α-l-Rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) is released from the precursor 4(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin; GMG) by myrosinase (ß-thioglucoside glucohydrolase; E.C. 3.2.1.147) catalyzed hydrolysis. GMG is an uncommon member of the glucosinolate group as it presents a unique characteristic consisting in a second glycosidic residue within the side chain. It is a typical glucosinolate found in large amounts in the seeds of Moringa oleifera Lam., the most widely distributed plant of the Moringaceae family. GMG was purified from seed-cake of M. oleifera and was hydrolyzed by myrosinase at neutral pH in order to form the corresponding GMG-ITC. This bioactive phytochemical can play a key role in counteracting the inflammatory response connected to the oxidative-related mechanisms as well as in the control of the neuronal cell death process, preserving spinal cord tissues after injury in mice. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24g) for 1 min., via four-level T5-T8 after laminectomy. In particular, the purpose of this study was to investigate the dynamic changes occurring in the spinal cord after ip treatment with bioactive GMG-ITC produced 15 min before use from myrosinase-catalyzed hydrolysis of GMG (10mg/kg body weight+5 µl Myr mouse/day). The following parameters, such as histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-κB translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as well as apoptosis, were evaluated. In conclusion, our results show a protective effect of bioactive GMG-ITC on the secondary damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection. Therefore, the bioactive phytochemical GMG-ITC freshly produced before use by myrosinase-catalyzed hydrolysis of pure GMG, could prove to be useful in the treatment of spinal cord trauma.


Assuntos
Isotiocianatos/farmacologia , Ramnose/análogos & derivados , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Isotiocianatos/química , Masculino , Camundongos , Moringa oleifera/química , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Ramnose/química , Ramnose/farmacologia , Traumatismos da Medula Espinal/metabolismo
3.
BMC Complement Altern Med ; 15: 397, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26545366

RESUMO

BACKGROUND: Cerebral ischemia and reperfusion (CIR) is a pathological condition characterized by a first blood supply restriction to brain followed by the consequent restoration of blood flow and simultaneous reoxygenation. The aim of this study was to evaluate the neuroprotective effects of Tuscan black kale sprout extract (TBK-SE) bioactivated with myrosinase enzyme, assessing its capability to preserve blood-brain barrier (BBB), in a rat model of CIR. METHODS: CIR was induced in rats according to a classic model of carotid artery occlusion for a time period of 1 h and the reperfusion time was prolonged for seven days. RESULTS: By immunohistochemical evaluation and western blot analysis of brain and cerebellum tissues, our data have clearly shown that administration of bioactive TBK-SE is able to restore alterations of tight junction components (claudin-5 immunolocalization). Also, bioactive TBK-SE reduces some inflammatory key-markers (p-selectin, GFAP, Iba-1, ERK1/2 and TNF-α), as well as the triggering of neuronal apoptotic death pathway (data about Bax/Bcl-2 balance, p53 and cleaved-caspase 3) and the generation of radicalic species by oxidative stress (results focused on iNOS, nitrotyrosine and Nrf2). CONCLUSION: Taken together, our findings lead to believe that bioactive TBK-SE exerts pharmacological properties in protecting BBB integrity through a mechanism of action that involves a modulation of inflammatory and oxidative pathway as well into control of neuronal death.


Assuntos
Isquemia Encefálica/complicações , Brassica/química , Glicosídeo Hidrolases/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/terapia , Brassica/enzimologia , Brassica/crescimento & desenvolvimento , Caspase 3/genética , Caspase 3/metabolismo , Humanos , Itália , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Sci Food Agric ; 95(1): 158-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24752914

RESUMO

BACKGROUND: Glucobrassicin (GBS), a glucosinolate contained in many brassica vegetables, is the precursor of chemopreventive compounds such as indole-3-carbinol. Large amounts of GBS would be needed to perform studies aimed at elucidating its role in the diet. This study was mainly undertaken to evaluate the flower buds of Isatis canescens as a source for GBS purification. In order to investigate the health-promoting potential of this species, glucosinolate, phenol and flavonoid content as well as the whole antioxidant capacity were also determined. Flower bud samples were collected in four localities around Mount Etna in Sicily, Italy, where I. canescens is widespread, as they are locally traditionally eaten. RESULTS: I. canescens flower buds displayed high GBS concentrations, up to 60 µmol g(-1) dry weight. The purification method consisted of two chromatographic steps, which made it possible to obtain GBS with a purity of 92-95%, with a yield of 21 g kg(-1) . The total glucosinolates, phenols, flavonoids and antioxidant activity were considerable, with the southern locality showing the highest concentrations for all the phytochemicals. CONCLUSION: I. canescens flower buds represent a naturally rich source of GBS, at a level suitable for its purification. Furthermore, flower bud consumption could provide an intake of health-promoting compounds, with possible antioxidant and chemopreventive properties.


Assuntos
Glucosinolatos/análise , Promoção da Saúde , Indóis/análise , Isatis/química , Anticarcinógenos , Antioxidantes , Flavonoides/análise , Flores/química , Glucosinolatos/administração & dosagem , Glucosinolatos/isolamento & purificação , Indóis/administração & dosagem , Indóis/isolamento & purificação , Itália , Fenóis/análise
5.
Molecules ; 19(6): 6975-86, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24871574

RESUMO

Dietary R-sulforaphane is a highly potent inducer of the Keap1/Nrf2/ARE pathway. Furthermore, sulforaphane is currently being used in clinical trials to assess its effects against different tumour processes. This study reports an efficient preparation of enantiopure R-sulforaphane based on the enzymatic hydrolysis of its natural precursor glucoraphanin. As an alternative to broccoli seeds, we have exploited Tuscan black kale seeds as a suitable source for gram-scale production of glucoraphanin. The defatted seed meal contained 5.1% (w/w) of glucoraphanin that was first isolated through an anion exchange chromatographic process, and then purified by gel filtration. The availability of glucoraphanin (purity≈95%, weight basis) has allowed us to develop a novel simple hydrolytic process involving myrosinase (EC 3.2.1.147) in a biphasic system to directly produce R-sulforaphane. In a typical experiment, 1.09 g of enantiopure R-sulforaphane was obtained from 150 g of defatted Tuscan black kale seed meal.


Assuntos
Brassica/metabolismo , Isotiocianatos/metabolismo , Sementes/metabolismo , Glucosinolatos , Glicosídeo Hidrolases/metabolismo , Imidoésteres , Oximas , Sulfóxidos
6.
Foods ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38890927

RESUMO

Two cultivars of wild rocket (Diplotaxis tenuifolia), cv. Denver and Marte, were subjected to chemical determination of flavour-related constituents, sensory descriptive analysis, and measurement of liking by consumer test. Consumers evaluated rocket leaves both as a single ingredient and in a recipe formed by a roll of bresaola with also Grana Padano cheese. Sensory analyses showed that Marte was characterized by a more intense bitterness, hotness, and pungency, which corresponded to a higher total GSL content, mainly due to a higher level of dimeric 4-mercaptobutyl GSL. Five clusters of consumers were identified based on their liking scores. When tasting rocket leaves as a single ingredient, three clusters showed a higher liking for the milder cultivar, one cluster showed an opposite preference, while flavour attributes, such as bitterness and hotness, appeared as the main drivers of liking. Differences in liking were no longer found between the two cultivars when rocket leaves were evaluated in the recipe. Therefore, as rocket leaves are generally consumed as a part of a recipe with other ingredients instead of as a single ingredient, in the assessment of consumer preferences, it should not be neglected the influence of the way in which the product is consumed.

7.
Bioorg Med Chem ; 21(17): 5532-47, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810671

RESUMO

This study was focused on the possible neuroprotective role of (RS)-glucoraphanin, bioactivated with myrosinase enzyme (bioactive RS-GRA), in an experimental mouse model of Parkinson's disease (PD). RS-GRA is one of the most important glucosinolates, a thiosaccharidic compound found in Brassicaceae, notably in Tuscan black kale seeds. RS-GRA was extracted by one-step anion exchange chromatography, further purified by gel-filtration and analyzed by HPLC. Following, pure RS-GRA was characterized by (1)H and (13)C NMR spectrometry and the purity was assayed by HPLC analysis of the desulfo-derivative according to the ISO 9167-1 method. The obtained purity has been of 99%. To evaluate the possible pharmacological efficacy of bioactive RS-GRA (administrated at the dose of 10mg/kg, ip +5µl/mouse myrosinase enzyme), C57BL/6 mice were used in two different sets of experiment (in order to evaluate the neuroprotective effects in different phases of the disease), according to an acute (2 injections·40mg/kg MPTP) and a sub-acute (5 injections·20mg/kg MPTP) model of PD. Behavioural test, body weight changes measures and immunohistochemical localization of the main PD markers were performed and post-hoc analysis has shown as bioactive RS-GRA is able to reduce dopamine transporter degradation, tyrosine hydroxylase expression, IL-1ß release, as well as the triggering of neuronal apoptotic death pathway (data about Bax/Bcl-2 balance and dendrite spines loss) and the generation of radicalic species by oxidative stress (results focused on nitrotyrosine, Nrf2 and GFAP immunolocalization). These effects have been correlated with the release of neurotrophic factors, such as GAP-43, NGF and BDNF, that, probably, play a supporting role in the neuroprotective action of bioactive RS-GRA. Moreover, after PD-induction mice treated with bioactive RS-GRA are appeared more in health than animals that did not received the treatment both for phenotypic behaviour and for general condition (movement coordination, presence of tremors, nutrition). Overall, our results suggest that bioactive RS-GRA can protect neurons against the neurotoxicity involved in PD via an anti-apoptotic/anti-inflammatory action.


Assuntos
Anti-Inflamatórios/química , Glucosinolatos/química , Glicosídeo Hidrolases/uso terapêutico , Imidoésteres/química , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Doença Aguda , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Brassicaceae/química , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteína GAP-43/metabolismo , Glucosinolatos/isolamento & purificação , Glucosinolatos/farmacologia , Glicosídeo Hidrolases/isolamento & purificação , Imidoésteres/isolamento & purificação , Imidoésteres/farmacologia , Imuno-Histoquímica , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oximas , Sinapis/enzimologia , Estereoisomerismo , Sulfóxidos
8.
Eur J Nutr ; 52(3): 1279-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22710810

RESUMO

PURPOSE: Glucosinolates/isothiocyanates are an established class of naturally occurring chemopreventive agents, a principal mechanism of action being to limit the generation of genotoxic metabolites of chemical carcinogens, as a result of modulation of cytochrome P450 and phase II detoxification enzymes. The objective of this study was to assess whether a glucosinolate-rich extract from Daikon sprouts, containing glucroraphasatin and glucoraphenin, is a potential chemopreventive agent by modulating such enzymes in the liver and lung of rats. METHODS: Rats were exposed to the glucosinolate-rich Daikon extract through the diet, at three dose levels, for 14 days, so that the low dose simulates dietary intake. RESULTS: At the low dose only, a modest increase was noted in the hepatic dealkylations of methoxy-, ethoxy-, pentoxyresorufin and benzyloxyquinoline that was accompanied by elevated expression of CYP1 and CYP3A2 apoprotein levels. In lung, only a modest increase in the dealkylation of pentoxyresorufin was observed. At higher doses, in both tissues, these increases were abolished. At the same low dietary dose, the Daikon extract elevated markedly glutathione S-transferase activity paralleled by rises in GSTα, GSTµ and GSTπ protein expression. An increase was also noted in quinone reductase activity and expression. Finally, glucuronosyl transferase and epoxide hydrolase activities and expression were also up-regulated, but necessitated higher doses. CONCLUSION: Considering the ability of Daikon glucosinolates to effectively enhance detoxification enzymes, in particular glutathione S-transferase, it may be inferred that consumption of this vegetable may possess significant chemopreventive activity and warrants further evaluation through epidemiology and studies in animal models of cancer.


Assuntos
Anticarcinógenos/metabolismo , Suplementos Nutricionais , Glucosinolatos/metabolismo , Glutationa Transferase/biossíntese , Fígado/enzimologia , Extratos Vegetais/metabolismo , Raphanus/química , Animais , Anticarcinógenos/administração & dosagem , Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Indução Enzimática , Epóxido Hidrolases/biossíntese , Epóxido Hidrolases/metabolismo , Glucosinolatos/administração & dosagem , Glucuronosiltransferase/biossíntese , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Isoenzimas/biossíntese , Isoenzimas/metabolismo , Fígado/metabolismo , Masculino , Extratos Vegetais/administração & dosagem , Brotos de Planta/química , Quinona Redutases/biossíntese , Quinona Redutases/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
9.
Arch Toxicol ; 86(2): 183-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21960141

RESUMO

The objective of this study was to establish whether the phytochemical glucoraphasatin, a glucosinolate present in cruciferous vegetables, and its corresponding isothiocyanate, 4-methylsulfanyl-3-butenyl isothiocyanate, up-regulate enzymes involved in the detoxification of carcinogens and are thus potential chemopreventive agents. Glucoraphasatin and myrosinase were isolated and purified from Daikon sprouts and Sinapis alba L., respectively. Glucoraphasatin (0-10 µM) was incubated for 24 h with precision-cut rat liver slices in the presence and absence of myrosinase, the enzyme that converts the glucosinolate to the isothiocyanate. The intact glucosinolate failed to influence the O-dealkylations of methoxy- and ethoxyresorufin or the apoprotein expression of CYP1 enzymes. Supplementation with myrosinase led to an increase in the dealkylation of methoxyresorufin, but only at the highest concentration of the glucosinolate, and CYP1A2 expression. In the absence of myrosinase, glucoraphasatin caused a marked increase in epoxide hydrolase activity at concentrations as low as 1 µM paralleled by a rise in the enzyme protein expression; at the highest concentration only, a rise was also observed in glucuronosyl transferase activity, but other phase II enzyme systems were unaffected. Addition of myrosinase to the glucoraphasatin incubation maintained the rise in epoxide hydrolase and glucuronosyl transferase activities, further elevated quinone reductase and glutathione S-transferase activities, and increased total glutathione concentrations. It is concluded that at low concentrations, glucoraphasatin, either intact and/or through the formation of 4-methylsulfanyl-3-butenyl isothiocyanate, is a potent inducer of hepatic enzymes involved in the detoxification of chemical carcinogens and merits further investigation for chemopreventive activity.


Assuntos
Anticarcinógenos/farmacologia , Brassicaceae/química , Glucosinolatos/química , Isotiocianatos/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Animais , Anticarcinógenos/química , Indução Enzimática/efeitos dos fármacos , Glucosinolatos/farmacologia , Glicosídeo Hidrolases/metabolismo , Inativação Metabólica , Isotiocianatos/química , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Sinapis/química
10.
Arch Toxicol ; 85(8): 919-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21132492

RESUMO

The potential of three isothiocyanates, namely R,S-sulforaphane, erucin and phenethyl isothiocyanate, of two naturally occurring glucosinolates, namely glucoerucin and glucoraphanin, and of the enantiomers of sulforaphane to modulate glucuronosyl transferase and epoxide hydrolase, two major carcinogen-metabolising enzyme systems, was investigated in precision-cut rat liver slices. Following exposure of the slices to the isothiocyanates (0-25 µM), erucin and phenethyl isothiocyanate, but not R,S-sulforaphane, elevated glucuronosyl transferase and epoxide hydrolase activities and expression, determined immunologically. Of the two enantiomers of sulforaphane, the R-enantiomer enhanced, whereas the S-enantiomer impaired, glucuronosyl transferase activity and only the former increased protein expression; furthermore, R-sulforaphane was more effective than the S-enantiomer in up-regulating microsomal epoxide hydrolase. When precision-cut rat liver slices were exposed to the same concentrations of glucoerucin and glucoraphanin, both glucosinolates caused a marked increase in the activity and expression of the microsomal epoxide hydrolase but had no effect on glucuronosyl transferase activity. It may be inferred that the ability of isothiocyanates to enhance hepatic microsomal epoxide hydrolase and glucuronosyl transferase activities is dependent on the nature of the side chain. Moreover, in the case of sulforaphane, the naturally occurring R-enantiomer increased both activities, whereas, in contrast, activities were impaired in the case of the S-enantiomer. Finally, intact glucosinolates are potent inducers of epoxide hydrolase and can thus contribute directly to the chemopreventive potential associated with cruciferous vegetable consumption.


Assuntos
Epóxido Hidrolases/efeitos dos fármacos , Glucuronosiltransferase/efeitos dos fármacos , Isotiocianatos/farmacologia , Tiocianatos/farmacologia , Animais , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Epóxido Hidrolases/biossíntese , Glucose/análogos & derivados , Glucose/química , Glucose/farmacologia , Glucosinolatos/química , Glucosinolatos/farmacologia , Glucuronosiltransferase/biossíntese , Imidoésteres/química , Imidoésteres/farmacologia , Isotiocianatos/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Oximas , Ratos , Ratos Wistar , Estereoisomerismo , Sulfetos/administração & dosagem , Sulfetos/farmacologia , Sulfóxidos , Tiocianatos/administração & dosagem , Tiocianatos/química
11.
Nat Prod Res ; 33(9): 1383-1386, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29783892

RESUMO

A chemical study of the volatile components obtained by applying the hydrodistillation and reflux processes to Pentadiplandra brazzeana roots was performed by GC-FID and GC-MS. The hydrodistillation process showed a total yield of 0.97% with 0.11% of essential oil and 0.86% of volatile compounds from the aqueous reaction medium; in the reflux process, the volatile extract yield was 1.03%. Benzylic-type isothiocyanates were the major degradation products of glucosinolates in the essential oil (95.0%); the CH2Cl2 extracts obtained from the aqueous solutions were characterised by alcohols and amines in both processes. This study has shown that during hydrodistillation, only 10% of the glucosinolate degradation products are recovered in the essential oil whereas 90% remain in the aqueous medium, being converted into alcohols and amines. The relative percentages of the different chemical classes recovered in our experimental conditions are discussed in relation with the glucosinolate composition in the raw material.


Assuntos
Destilação/métodos , Magnoliopsida/química , Óleos Voláteis/isolamento & purificação , Raízes de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas , Glucosinolatos/química , Isotiocianatos/análise , Isotiocianatos/química , Óleos Voláteis/química , Extratos Vegetais/análise , Extratos Vegetais/química
12.
Rejuvenation Res ; 20(1): 50-63, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27245199

RESUMO

The present study was aimed at estimating a possible neuroprotective effect of glucomoringin (GMG) [4-(α-L-rhamnopyranosyloxy)benzyl glucosinolate] bioactivated with the enzyme myrosinase to form the corresponding isothiocyanate [4-(α-L-rhamnopyranosyloxy)benzyl C; moringin] in the treatment or prevention of Parkinson's disease (PD). In this study, the beneficial effects of moringin were compared with those of pure GMG, not enzymatically activated, in an in vivo experimental mouse model of subacute PD. Subacute PD was induced in C57BL/6 mice by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice were pretreated daily for 1 week with moringin (10 mg/kg +5 µL myrosinase/mouse) and with GMG (10 mg/kg). Behavioral evaluations were also performed to assess motor deficits and bradykinesia in MPTP mice. Besides, assuming that pretreatment with moringin could modulate the triggering of inflammatory cascade with a correlated response, we tested its in vitro anti-inflammatory activity by using a model of RAW 264.7 macrophages stimulated with lipopolysaccharide. Achieved results in vivo showed a higher efficacy of moringin compared with GMG not only to modulate the inflammatory pathway but also oxidative stress and apoptotic pathways. In addition, the greater effectiveness of moringin in countering mainly the inflammatory pathway has been corroborated by the results obtained in vitro. The relevance and innovation of the present study lie in the possible use of a safe formulation of a bioactive compound, resulting from exogenous myrosinase hydrolysis of the natural phytochemical GMG, which can be used in clinical practice as a useful drug for the treatment or prevention of PD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Isotiocianatos/uso terapêutico , Moringa oleifera/química , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Inflamação/patologia , Isotiocianatos/farmacologia , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/fisiopatologia , Células RAW 264.7 , Ramnose/análogos & derivados , Ramnose/uso terapêutico , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Fitoterapia ; 110: 1-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26882972

RESUMO

Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Astrocitoma/patologia , Isotiocianatos/farmacologia , Moringa/química , Ramnose/análogos & derivados , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Isotiocianatos/isolamento & purificação , Estrutura Molecular , Estresse Oxidativo , Ramnose/isolamento & purificação , Ramnose/farmacologia
14.
Drug Des Devel Ther ; 10: 3291-3304, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27784989

RESUMO

Aberrant canonical Wnt-ß-catenin signaling has been reported in multiple sclerosis (MS), although the results are controversial. The present study aimed to examine the role of the Wnt-ß-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate), resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy)-benzyl glucosinolate as a modulator of neuroinflammation via the ß-catenin-PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35-55. Released moringin (10 mg/kg glucomoringin +5 µL myrosinase/mouse) was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt-ß-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt-ß-catenin pathway, resulting in GSK3ß inhibition and ß-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the main inflammatory mediators (IL-1ß, IL-6, and COX2), through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt-ß-catenin signaling cascade and as a new potential therapeutic target for MS treatment.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Isotiocianatos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/enzimologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Isotiocianatos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL
15.
PLoS One ; 11(3): e0150913, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26987061

RESUMO

BACKGROUND: Obesity is recognized as a leading global health problem, correlated with an increased risk for several chronic diseases. One strategy for weight control management includes the use of vegetables rich in bioactive compounds to counteract weight gain, improve the antioxidant status and stimulate lipid catabolism. AIM OF THE STUDY: The aim of this study was to investigate the role of Raphanus sativus Sango sprout juice (SSJ), a Brassica extraordinarily rich in anthocyanins (AC) and isothiocyanates (ITCs), in a non-genetic model of obesity (high fat diet-HFD induced). METHODS: Control groups were fed with HFD or regular diet (RD). After a 10-week period, animals were assigned to experimental units and treated by gavage for 28 days as follows: HFD and RD control groups (rats fed HFD or RD and treated with vehicle only) and HFD-treated groups (rats fed HFD and treated with 15, 75 or 150 mg/kg b.w. of SSJ). Body weight and food consumption were recorded and serum lipid profile was measured (total cholesterol, triglycerides, and non-esterified fatty acids). Hepatic phase-I, phase-II as well as antioxidant enzymatic activities were assessed. RESULTS: SSJ lowered total cholesterol level, food intake and liver weight compared with HFD rodents. SSJ at medium dose proved effective in reducing body-weight (~19 g reduction). SSJ was effective in up-regulating the antioxidant enzymes catalase, NAD(P)H: quinone reductase, oxidised glutathione reductase and superoxide dismutase, which reached or exceeded RD levels, as well as the phase II metabolic enzyme UDP-glucuronosyl transferase (up to about 43%). HFD up-regulated almost every cytochrome P450 isoform tested, and a mild down-regulation to baseline was observed after SSJ intervention. CONCLUSION: This work reveals, for the first time, the antioxidant, hypolipidemic and antiobesity potential of SSJ, suggesting its use as an efficient new functional food/nutraceutical product.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sucos de Frutas e Vegetais , Alimento Funcional , Obesidade/prevenção & controle , Raphanus , Animais , Peso Corporal , Sucos de Frutas e Vegetais/análise , Alimento Funcional/análise , Fígado/enzimologia , Fígado/patologia , Masculino , Obesidade/sangue , Obesidade/enzimologia , Obesidade/patologia , Raphanus/química , Ratos Sprague-Dawley , Aumento de Peso
16.
Fitoterapia ; 112: 104-15, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27215129

RESUMO

Inflammatory response plays an important role in the activation and progress of many debilitating diseases. Natural products, like cannabidiol, a constituent of Cannabis sativa, and moringin, an isothiocyanate obtained from myrosinase-mediated hydrolysis of the glucosinolate precursor glucomoringin present in Moringa oleifera seeds, are well known antioxidants also endowed with anti-inflammatory activity. This is due to a covalent-based mechanism for ITC, while non-covalent interactions underlie the activity of CBD. Since these two mechanisms are distinct, and the molecular endpoints are potentially complementary, we investigated in a comparative way the protective effect of these compounds alone or in combination on lipopolysaccharide-stimulated murine macrophages. Our results show that the cannabidiol (5µM) and moringin (5µM) combination outperformed the single constituents that, at this dosage had only a moderate efficacy on inflammatory (Tumor necrosis factor-α, Interleukin-10) and oxidative markers (inducible nitric oxide synthase, nuclear factor erythroid 2-related factor 2, nitrotyrosine). Significant upregulation of Bcl-2 and downregulation of Bax and cleaved caspase-3 was observed in cells treated with cannabidiol-moringin combination. Treatment with the transient receptor potential vanilloid receptor 1 antagonist was detrimental for the efficacy of cannabidiol, while no effect was elicited by cannabinoid receptor 1 and cannabinoid receptor 2 antagonists. None of these receptors was involved in the activity of moringin. Taken together, our in vitro results testify the anti-inflammatory, antioxidative, and anti-apoptotic effects of the combination of cannabidiol and moringin.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Canabidiol/farmacologia , Isotiocianatos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos , Camundongos , Moringa/química , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
17.
PLoS One ; 11(6): e0157430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27304884

RESUMO

Sulforaphane (SFN) and moringin (GMG-ITC) are edible isothiocyanates present as glucosinolate precursors in cruciferous vegetables and in the plant Moringa oleifera respectively, and recognized for their chemopreventive and medicinal properties. In contrast to the well-studied SFN, little is known about the molecular pathways targeted by GMG-ITC. We investigated the ability of GMG-ITC to inhibit essential signaling pathways that are frequently upregulated in cancer and immune disorders, such as JAK/STAT and NF-κB. We report for the first time that, similarly to SFN, GMG-ITC in the nanomolar range suppresses IL-3-induced expression of STAT5 target genes. GMG-ITC, like SFN, does not inhibit STAT5 phosphorylation, suggesting a downstream inhibitory event. Interestingly, treatment with GMG-ITC or SFN had a limited inhibitory effect on IFNα-induced STAT1 and STAT2 activity, indicating that both isothiocyanates differentially target JAK/STAT signaling pathways. Furthermore, we showed that GMG-ITC in the micromolar range is a more potent inhibitor of TNF-induced NF-κB activity than SFN. Finally, using a cellular system mimicking constitutive active STAT5-induced cell transformation, we demonstrated that SFN can reverse the survival and growth advantage mediated by oncogenic STAT5 and triggers cell death, therefore providing experimental evidence of a cancer chemopreventive activity of SFN. This work thus identified STAT5, and to a lesser extent STAT1/STAT2, as novel targets of moringin. It also contributes to a better understanding of the biological activities of the dietary isothiocyanates GMG-ITC and SFN and further supports their apparent beneficial role in the prevention of chronic illnesses such as cancer, inflammatory diseases and immune disorders.


Assuntos
Isotiocianatos/farmacologia , Janus Quinases/metabolismo , Moringa oleifera/química , Fatores de Transcrição STAT/metabolismo , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Interferon-alfa/farmacologia , Interleucina-3/farmacologia , Isotiocianatos/química , Isotiocianatos/isolamento & purificação , Janus Quinases/genética , Camundongos , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição STAT/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética
18.
Nat Prod Commun ; 10(6): 1043-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26197547

RESUMO

C8-C10 methylsulfinylalkyl glucosinolates (GLs), and C8-C10 methylsulfonylalkyl GLs were identified in the seed of Arabis turrita L. by HPLC-MS/ESI analysis of intact GLs. Enzymatic (with myrosinase) and non-enzymatic (thermal at 100 degrees C, and chemical at different pH) hydrolyses were performed and the volatile isolates were analyzed by GC-MS. Only the enzymatic and chemical (pH 10) degradations produced volatiles which are originating from GL degradation. GC-MS analysis showed the presence of long-chain olefinic isothiocyanates (ITCs) along with other the long-chain thiofunctionalized GL breakdown products.


Assuntos
Arabis/química , Glucosinolatos/química , Glicosídeo Hidrolases/química , Extratos Vegetais/química , Biocatálise , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Sementes/química
19.
Biomed Res Int ; 2015: 259417, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075221

RESUMO

4-(α-L-Rhamnosyloxy)-benzyl glucosinolate (glucomoringin, GMG) is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate (GMG-ITC). The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS) using SOD1tg rats, which physiologically develops SOD1(G93A) at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg) bioactivated with myrosinase (20 µL/rat) via intraperitoneal (i.p.) injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Isotiocianatos/uso terapêutico , Ramnose/análogos & derivados , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Biotransformação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Glicosídeo Hidrolases/metabolismo , Humanos , Isotiocianatos/administração & dosagem , Isotiocianatos/farmacocinética , Masculino , Proteínas Mutantes/genética , Fenótipo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ramnose/administração & dosagem , Ramnose/farmacocinética , Ramnose/uso terapêutico
20.
Food Chem ; 166: 397-406, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25053073

RESUMO

Little is known on structure-activity relationships of antioxidant anthocyanins. Raphanus sativus cv Sango sprouts are among the richest sources (270 mg/100 g fresh weight). We isolated from sprouts' juice 9 acylated anthocyanins, including 4 new compounds. All comprise a cyanidin core bearing 3-4 glucose units, multiply acylated with malonic and phenolic acids (ferulic and sinapic). All compounds were equally effective in inhibiting the autoxidation of linoleic acid in aqueous micelles, with rate constant for trapping peroxyl radicals kinh=(3.8 ± 0.7) × 10(4)M(-1)s(-1) at 37 °C. In acetonitrile solution kinh varied with acylation: (0.9-2.1) × 10(5)M(-1)s(-1) at 30 °C. Each molecule trapped a number n of peroxyl radicals ranging from 4 to 7. Anthocyanins bearing sinapic acid were more effective than those bearing the ferulic moiety. Under identical settings, deacylated cyanin, ferulic and sinapic acids had kinh of 0.4 × 10(5), 0.3 × 10(5) and 1.6 × 10(5)M(-1)s(-1) respectively, with n ranging 2-3. Results show the major role of acylation on antioxidant performance.


Assuntos
Antocianinas/química , Antioxidantes/química , Hidroxibenzoatos/química , Raphanus/química , Oxirredução , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA