Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 273, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085802

RESUMO

Early in the COVID-19 pandemic, it emerged that the risk of severe outcomes was greater in patients with co-morbidities, including cancer. The huge effort undertaken to fight the pandemic, affects the management of cancer care, influencing their outcome. Despite the high fatality rate of COVID-19 disease in cancer patients, rare cases of temporary or prolonged clinical remission from cancers after SARS-CoV-2 infection have been reported. We have reviewed sixteen case reports of COVID-19 disease with spontaneous cancer reduction of progression. Fourteen cases of remission following viral infections and two after anti-SARS-CoV-2 vaccination. The immune response to COVID-19, may be implicated in both tumor regression, and progression. Specifically, we discuss potential mechanisms which include oncolytic and priming hypotheses, that may have contributed to the cancer regression in these cases and could be useful for future options in cancer treatment.


Assuntos
COVID-19 , Neoplasias , Humanos , Pandemias , SARS-CoV-2 , Neoplasias/complicações , Neoplasias/terapia
2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108672

RESUMO

Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Neoplasias , Humanos , Células Endoteliais/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Neoplasias/genética , Neoplasias/patologia , Doenças Cardiovasculares/patologia , Epigênese Genética , Microambiente Tumoral/genética
3.
J Vasc Res ; 59(1): 61-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34535602

RESUMO

Increasing evidence suggests that maternal cholesterol represents an important risk factor for atherosclerotic disease in offspring already during pregnancy, although the underlying mechanisms have not yet been elucidated. Eighteen human fetal aorta samples were collected from the spontaneously aborted fetuses of normal cholesterolemic and hypercholesterolemic mothers. Maternal total cholesterol levels were assessed during hospitalization. DNA methylation profiling of the whole SREBF2 gene CpG island was performed (p value <0.05). The Mann-Whitney U test was used for comparison between the 2 groups. For the first time, our study revealed that in fetal aortas obtained from hypercholesterolemic mothers, the SREBF2 gene shows 4 significant differentially hypermethylated sites in the 5'UTR-CpG island. This finding indicates that more effective long-term primary cardiovascular prevention programs need to be designed for the offspring of mothers with hypercholesterolemia. Further studies should be conducted to clarify the epigenetic mechanisms underlying the association between early atherogenesis and maternal hypercholesterolemia during pregnancy.


Assuntos
Aorta/metabolismo , Metilação de DNA , Epigênese Genética , Hipercolesterolemia/genética , Complicações na Gravidez/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Aorta/embriologia , Biomarcadores/sangue , Estudos de Casos e Controles , Colesterol/sangue , Epigenoma , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Idade Gestacional , Humanos , Hipercolesterolemia/sangue , Gravidez , Complicações na Gravidez/sangue , Mapas de Interação de Proteínas
4.
Curr Opin Cardiol ; 36(3): 295-300, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33605616

RESUMO

PURPOSE OF REVIEW: Cardiovascular diseases (CVDs) are typically caused by multifactorial events including mutations in a large number of genes. Epigenetic-derived modifications in the cells are normal but can be amended by aging, lifestyle, and exposure to toxic substances. Major epigenetic modifications are DNA methylation, histone modification, chromatin remodeling as well as the noncoding RNAs. These pivotal players are involved in the epigenetic-induced modifications observed during CVDs. Nevertheless, despite impressive efforts capitalized in epigenetic research in the last 50 years, clinical applications are still not satisfactory. RECENT FINDINGS: Briefly, we present some of the recent steps forward in the epigenetic studies of CVDs. There is an increased appreciation for the contribution of epigenetic alterations in the development of CVDs. Now, we have novel epigenetic biomarkers and therapeutic trials with the use of statins, metformin, and some compounds affecting epigenetic pathways including a BET inhibitor apabetalone. The new knowledge of epigenetic regulation is also discussed in the light of precision medicine of CVDs. SUMMARY: Epigenetic studies of CVDs have the promise to yield both mechanistic insights as well as adjunct treatments (repurposed drugs and apabetalone). The overall concept of precision medicine is not widely recognized in routine medical practice and the so-called reductionist approach remains the most used way to treat CVD patients.


Assuntos
Doenças Cardiovasculares , Epigênese Genética , Doenças Cardiovasculares/genética , Metilação de DNA , Humanos , Medicina de Precisão , RNA não Traduzido
5.
Biochim Biophys Acta Rev Cancer ; 1868(2): 449-455, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28916343

RESUMO

Ultraconserved regions (UCRs) represent a relatively new class of non-coding genomic sequences highly conserved between human, rat and mouse genomes. These regions can reside within exons of protein-coding genes, despite the vast majority of them localizes within introns or intergenic regions. Several studies have undoubtedly demonstrated that most of these regions are actively transcribed in normal cells/tissues, where they contribute to regulate many cellular processes. Interestingly, these non-coding RNAs exhibit aberrant expression levels in human cancer cells and their expression profiles have been used as prognostic factors in human malignancies, as well as to unambiguously distinguish among distinct cancer types. In this review, we first describe their identification, then we provide some updated information about their genomic localization and classification. More importantly, we discuss about the available literature describing an overview of the mechanisms through which some transcribed UCRs (T-UCR) contribute to cancer progression or to the metastatic spread. To date, the interplay between T-UCRs and microRNAs is the most convincing evidence linking T-UCRs and tumorigenesis. The limitations of these studies and the future challenges to be addressed in order to understand the biological role of T-UCRs are also discussed herein. We envision that future efforts are needed to convincingly include this class of ncRNAs in the growing area of cancer therapeutics.


Assuntos
Sequência Conservada , Neoplasias/genética , RNA Longo não Codificante/fisiologia , Animais , Carcinogênese , Sequência Conservada/genética , Ilhas de CpG , Metilação de DNA , Variação Genética , Humanos , MicroRNAs/fisiologia , Neoplasias/etiologia , Polimorfismo de Nucleotídeo Único
6.
Br J Cancer ; 121(11): 979-982, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666667

RESUMO

Selection of cancer patients for treatment with immune checkpoint inhibitors remains a challenge due to tumour heterogeneity and variable biomarker detection. PD-L1 expression in 24 surgical chordoma specimen was determined immunohistochemically with antibodies 28-8 and E1L3N. The ability of patient-derived organoids to detect treatment effects of nivolumab was explored by quantitative and qualitative immunofluorescence and FACS analysis. The more sensitive antibody, E1L3N (ROC = 0.896, p = 0.001), was associated with greater tumour diameters (p = 0.014) and detected both tumour cells and infiltrating lymphocytes in 54% of patients, but only 1-15% of their cells. Organoids generated from PD-L1-positive patients contained both tumour cells and PD-1/CD8-positive lymphocytes and responded to nivolumab treatment with marked dose-dependent diameter reductions of up to 50% and increased cell death in both PD-L1-positive and negative organoids. Patient-derived organoids may be valuable to predict individual responses to immunotherapy even in patients with low or no immunohistochemical PD-L1 expression.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Cordoma/metabolismo , Descoberta de Drogas/métodos , Imunoterapia/métodos , Nivolumabe/farmacologia , Organoides/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Cordoma/patologia , Cordoma/cirurgia , Feminino , Humanos , Imuno-Histoquímica/métodos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Receptor de Morte Celular Programada 1/metabolismo
7.
Int J Mol Sci ; 19(2)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466296

RESUMO

Cancer treatment is rapidly evolving toward personalized medicine, which takes into account the individual molecular and genetic variability of tumors. Sophisticated new in vitro disease models, such as three-dimensional cell cultures, may provide a tool for genetic, epigenetic, biomedical, and pharmacological research, and help determine the most promising individual treatment. Sarcomas, malignant neoplasms originating from mesenchymal cells, may have a multitude of genomic aberrations that give rise to more than 70 different histopathological subtypes. Their low incidence and high level of histopathological heterogeneity have greatly limited progress in their treatment, and trials of clinical sarcoma are less frequent than trials of other carcinomas. The main advantage of 3D cultures from tumor cells or biopsy is that they provide patient-specific models of solid tumors, and they overcome some limitations of traditional 2D monolayer cultures by reflecting cell heterogeneity, native histologic architectures, and cell-extracellular matrix interactions. Recent advances promise that these models can help bridge the gap between preclinical and clinical research by providing a relevant in vitro model of human cancer useful for drug testing and studying metastatic and dormancy mechanisms. However, additional improvements of 3D models are expected in the future, specifically the inclusion of tumor vasculature and the immune system, to enhance their full ability to capture the biological features of native tumors in high-throughput screening. Here, we summarize recent advances and future perspectives of spheroid and organoid in vitro models of rare sarcomas that can be used to investigate individual molecular biology and predict clinical responses. We also highlight how spheroid and organoid culture models could facilitate the personalization of sarcoma treatment, provide specific clinical scenarios, and discuss the relative strengths and limitations of these models.


Assuntos
Medicina de Precisão , Sarcoma/patologia , Esferoides Celulares/patologia , Animais , Humanos , Modelos Biológicos , Células Tumorais Cultivadas , Microambiente Tumoral
8.
Biochim Biophys Acta ; 1859(5): 697-704, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26975854

RESUMO

Polycomb group (PcG) proteins belong to a family of epigenetic modifiers and play a key role in dynamic control of their target genes. Several reports have found that aberrations in PcG-microRNA (miRNA) interplay in various cancer types often associated with poor clinical prognosis. This review discusses important PcG-miRNA molecular networks which act as critical interfaces between chromatin remodeling, and transcriptional and post-transcriptional regulation of their target genes in cancer. Moreover, here are discussed several compounds influencing the activity of PcG proteins entered in clinical arena for the treatment of solid tumors, multiple myeloma and B lymphomas, thus highlighting the therapeutic potential of targeting this protein family.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Neoplasias/genética , Proteínas do Grupo Polycomb/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/biossíntese , Proteínas do Grupo Polycomb/biossíntese
9.
Biochim Biophys Acta ; 1853(5): 975-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644713

RESUMO

Yin Yang 1 (YY1) is a member of polycomb protein family involved in epigenetic modifications and transcriptional controls. We have shown that YY1 acts as positive regulator of tumor growth and angiogenesis by interfering with the VEGFA network. Yet, the link between polycomb chromatin complex and hypoxia regulation of VEGFA is still poorly understood. Here, we establish that hypoxia impairs YY1 binding to VEGFA mRNA 3'UTR (p<0.001) in bone malignancy. Moreover, RNA immunoprecipitation reveals the formation of triplex nuclear complexes among YY1, VEGFA DNA, mRNA, and unreached about 200 fold primiRNA 200b and 200c via Dicer protein. In this complex, YY1 is necessary to maintain the steady-state level of VEGFA expression while its silencing increases VEGFA mRNA half-life at 4 h and impairs the maturation of miRNA 200b/c. Hypoxia promotes histone modification through ubiquitination both of YY1 and Dicer proteins. Hypoxia-mediated down-regulation of YY1 and Dicer changes post-transcriptional VEGFA regulation by resulting in the accumulation of primiRNA200b/c in comparison to mature miRNAs (p<0.001). Given the regulatory functions of VEGFA on cellular activities to promote neoangiogenesis, we conclude that YY1 acts as novel critical interface between epigenetic code and miRNAs machinery under chronic hypoxia in malignancy.


Assuntos
Epigênese Genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Fator de Transcrição YY1/metabolismo , Sequência de Bases , Hipóxia Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , MicroRNAs/genética , Modelos Biológicos , Dados de Sequência Molecular , Osteossarcoma/patologia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Transcrição YY1/genética
10.
Biochim Biophys Acta ; 1845(1): 66-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24342527

RESUMO

Mediator complex (MED) is an evolutionarily conserved multiprotein, fundamental for growth and survival of all cells. In eukaryotes, the mRNA transcription is dependent on RNA polymerase II that is associated to various molecules like general transcription factors, MED subunits and chromatin regulators. To date, transcriptional machinery dysfunction has been shown to elicit broad effects on cell proliferation, development, differentiation, and pathologic disease induction, including cancer. Indeed, in malignant cells, the improper activation of specific genes is usually ascribed to aberrant transcription machinery. Here, we focus our attention on the correlation of MED subunits with carcinogenesis. To date, many subunits are mutated or display altered expression in human cancers. Particularly, the role of MED1, MED28, MED12, CDK8 and Cyclin C in cancer is well documented, although several studies have recently reported a possible association of other subunits with malignancy. Definitely, a major comprehension of the involvement of the whole complex in cancer may lead to the identification of MED subunits as novel diagnostic/prognostic tumour markers to be used in combination with imaging technique in clinical oncology, and to develop novel anti-cancer targets for molecular-targeted therapy.


Assuntos
Complexo Mediador/fisiologia , Neoplasias/etiologia , Ciclina C/fisiologia , Quinase 8 Dependente de Ciclina/fisiologia , Humanos , Subunidade 1 do Complexo Mediador/fisiologia
11.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339244

RESUMO

Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.

12.
Front Pharmacol ; 15: 1375805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590636

RESUMO

Introduction: The purine analog 6-thioguanine (6TG), an old drug approved in the 60s to treat acute myeloid leukemia (AML), was tested in the diabetic retinopathy (DR) experimental in vivo setting along with a molecular modeling approach. Methods: A computational analysis was performed to investigate the interaction of 6TG with MC1R and MC5R. This was confirmed in human umbilical vein endothelial cells (HUVECs) exposed to high glucose (25 mM) for 24 h. Cell viability in HUVECs exposed to high glucose and treated with 6TG (0.05-0.5-5 µM) was performed. To assess tube formation, HUVECs were treated for 24 h with 6TG 5 µM and AGRP (0.5-1-5 µM) or PG20N (0.5-1-5-10 µM), which are MC1R and MC5R antagonists, respectively. For the in vivo DR setting, diabetes was induced in C57BL/6J mice through a single streptozotocin (STZ) injection. After 2, 6, and 10 weeks, diabetic and control mice received 6TG intravitreally (0.5-1-2.5 mg/kg) alone or in combination with AGRP or PG20N. Fluorescein angiography (FA) was performed after 4 and 14 weeks after the onset of diabetes. After 14 weeks, mice were euthanized, and immunohistochemical analysis was performed to assess retinal levels of CD34, a marker of endothelial progenitor cell formation during neo-angiogenesis. Results: The computational analysis evidenced a more stable binding of 6TG binding at MC5R than MC1R. This was confirmed by the tube formation assay in HUVECs exposed to high glucose. Indeed, the anti-angiogenic activity of 6TG was eradicated by a higher dose of the MC5R antagonist PG20N (10 µM) compared to the MC1R antagonist AGRP (5 µM). The retinal anti-angiogenic effect of 6TG was evident also in diabetic mice, showing a reduction in retinal vascular alterations by FA analysis. This effect was not observed in diabetic mice receiving 6TG in combination with AGRP or PG20N. Accordingly, retinal CD34 staining was reduced in diabetic mice treated with 6TG. Conversely, it was not decreased in diabetic mice receiving 6TG combined with AGRP or PG20N. Conclusion: 6TG evidenced a marked anti-angiogenic activity in HUVECs exposed to high glucose and in mice with DR. This seems to be mediated by MC1R and MC5R retinal receptors.

13.
J Cell Physiol ; 228(4): 846-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23042366

RESUMO

Understanding the mechanisms inducing endothelial cell (EC) proliferation following tumor microenvironment stimuli may be important for the development of antiangiogenic therapies. Here, we show that cyclin-dependent kinase 2 and 5 (Cdk2, Cdk5) are important mediators of neoangiogenesis in in vitro and in vivo systems. Furthermore, we demonstrate that a specific Yin Yang 1 (YY1) protein-dependent signal from osteosarcoma (SaOS) cells determines proliferation of human aortic endothelial cells (HAECs). Following tumor cell stimuli, HAECs overexpress Cdk2 and Cdk5, display increased Cdk2 activity, undergo enhanced proliferation, and form capillary-like structures. Moreover, Roscovitine, an inhibitor of Cdks, blunted overexpression of Cdk2 and Cdk5 and Cdk2 activity induced by the YY1-dependent signal secreted by SaOS cells. Furthermore, Roscovitine decreased HAEC proliferation and angiogenesis (the latter by 70% in in vitro and 50% in in vivo systems; P < 0.01 vs. control). Finally, the finding that Roscovitine triggers apoptosis in SaOS cells as well as in HAECs by activating caspase-3/7 indicates multiple mechanisms for the potential antitumoral effect of Roscovitine. Present work suggests that Cdk2 and Cdk5 might be pharmacologically accessible targets for both antiangiogenic and antitumor therapy.


Assuntos
Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/patologia , Células Endoteliais/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/metabolismo , Animais , Antineoplásicos/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Meios de Cultura , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Purinas/farmacologia , Roscovitina , Regulação para Cima , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(32): 14484-9, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660740

RESUMO

Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1alpha at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.


Assuntos
Neoplasias/irrigação sanguínea , Neovascularização Patológica , Receptores CXCR4/antagonistas & inibidores , Fatores de Crescimento do Endotélio Vascular/genética , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transplante de Neoplasias , Neoplasias/metabolismo , Peptídeos/farmacologia , Ratos , Receptor Cross-Talk/fisiologia , Receptores CXCR4/metabolismo , Fatores de Transcrição , Transplante Heterólogo , Fator de Transcrição YY1/fisiologia
15.
Cells ; 12(17)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37681936

RESUMO

Genomic-based precision medicine has not only improved tumour therapy but has also shown its weaknesses. Genomic profiling and mutation analysis have identified alterations that play a major role in sarcoma pathogenesis and evolution. However, they have not been sufficient in predicting tumour vulnerability and advancing treatment. The relative rarity of sarcomas and the genetic heterogeneity between subtypes also stand in the way of gaining statistically significant results from clinical trials. Personalized three-dimensional tumour models that reflect the specific histologic subtype are emerging as functional assays to test anticancer drugs, complementing genomic screening. Here, we provide an overview of current target therapy for sarcomas and discuss functional assays based on 3D models that, by recapitulating the molecular pathways and tumour microenvironment, may predict patient response to treatments. This approach opens new avenues to improve precision medicine when genomic and pathway alterations are not sufficient to guide the choice of the most promising treatment. Furthermore, we discuss the aspects of the 3D culture assays that need to be improved, such as the standardisation of growth conditions and the definition of in vitro responses that can be used as a cut-off for clinical implementation.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Genômica , Imunoterapia , Sarcoma/genética , Sarcoma/terapia , Fenótipo , Microambiente Tumoral/genética
16.
Nutrients ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771270

RESUMO

Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.


Assuntos
Doenças Cardiovasculares , Microbiota , Neoplasias , Animais , Colina/metabolismo , Metilaminas/metabolismo , Inflamação , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle
17.
J Exp Clin Cancer Res ; 42(1): 134, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231503

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Large-scale metabolomic data have associated metabolic alterations with the pathogenesis and progression of renal carcinoma and have correlated mitochondrial activity with poor survival in a subset of patients. The aim of this study was to determine whether targeting mitochondria-lysosome interaction could be a novel therapeutic approach using patient-derived organoids as avatar for drug response. METHODS: RNAseq data analysis and immunohistochemistry were used to show overexpression of Purinergic receptor 4 (P2XR4) in clear cell carcinomas. Seahorse experiments, immunofluorescence and fluorescence cell sorting were used to demonstrate that P2XR4 regulates mitochondrial activity and the balance of radical oxygen species. Pharmacological inhibitors and genetic silencing promoted lysosomal damage, calcium overload in mitochondria and cell death via both necrosis and apoptosis. Finally, we established patient-derived organoids and murine xenograft models to investigate the antitumor effect of P2XR4 inhibition using imaging drug screening, viability assay and immunohistochemistry. RESULTS: Our data suggest that oxo-phosphorylation is the main source of tumor-derived ATP in a subset of ccRCC cells expressing P2XR4, which exerts a critical impact on tumor energy metabolism and mitochondrial activity. Prolonged mitochondrial failure induced by pharmacological inhibition or P2XR4 silencing was associated with increased oxygen radical species, changes in mitochondrial permeability (i.e., opening of the transition pore complex, dissipation of membrane potential, and calcium overload). Interestingly, higher mitochondrial activity in patient derived organoids was associated with greater sensitivity to P2XR4 inhibition and tumor reduction in a xenograft model. CONCLUSION: Overall, our results suggest that the perturbed balance between lysosomal integrity and mitochondrial activity induced by P2XR4 inhibition may represent a new therapeutic strategy for a subset of patients with renal carcinoma and that individualized organoids may be help to predict drug efficacy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Cálcio/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
18.
J Cell Physiol ; 227(11): 3639-47, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22331607

RESUMO

Oxidation and glycation enhance foam cell formation via MAPK/JNK in euglycemic and diabetic subjects. Here, we investigated the effects of glycated and oxidized LDL (glc-oxLDL) on MAPK-ERK and JNK signaling pathways using human coronary smooth muscle cells. Glc-oxLDL induced a broad cascade of MAPK/JNK-dependent signaling transduction pathways and the AP-1 complex. In glc-oxLDL treated coronary arterioles, tumor necrosis factor (TNF) α increased JNK phosphorylation, whereas protein kinase inhibitor dimethylaminopurine (DMAP) prevented the TNF-induced increase in JNK phosphorylation. The role of MKK4 and JNK were then investigated in vivo, using apolipoprotein E knockout (ApoE(-/-)) mice. Peritoneal macrophages, isolated from spontaneously hyperlipidemic but euglycemic mice showed increases in both proteins and phosphorylated proteins. Compared to streptozotocin-treated diabetic C57BL6 and nondiabetic C57BL6 Wt mice, in streptozotocin-diabetic ApoE(-/-) mice, the increment of foam cell formation corresponded to an increment of phosphorylation of JNK1, JNK2, and MMK4. Thus, we provide a first line of evidence that MAPK-ERK/JNK pathways are involved in vascular damage induced by glycoxidation.


Assuntos
Apolipoproteínas E , Lipoproteínas LDL/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Diabetes Mellitus Experimental , Células Espumosas/citologia , Células Espumosas/metabolismo , Produtos Finais de Glicação Avançada , Humanos , Lipoproteínas LDL/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Macrófagos Peritoneais/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Músculo Liso Vascular/citologia , Oxirredução , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884474

RESUMO

The major histocompatibility complex (MHC) class I expression in cancer cells has a crucial impact on the outcome of T cell-mediated cancer immunotherapy. We now determined the HLA class I allelic variants and their expression in PD-L1-deficient and positive rare sarcoma tissues. Tumor tissues were HLA-I classified based on HLA-A and -B alleles, and for class II, the HLA-DR-B by Taqman genomic PCRs. The HLA-A24*:10-B73*:01 haplotype was the most common. A general down-regulation or deletion of HLA-B mRNA and HLA-A was observed, compared to HLA-DR-B. HLA-I was almost too low to be detectable by immunohistochemistry and 32% of grade III cases were positive to PD-L1. Functional cytotoxic assays co-culturing patient biopsies with autologous T cells were used to assess their ability to kill matched tumor cells. These results establish that deletion of HLA-I loci together with their down-regulation in individual patient restrict the autologous lymphocyte cytotoxic activity, even in the presence of the immune checkpoint blocking antibody, Nivolumab. Additionally, the proposed cytotoxic test suggests a strategy to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.

20.
Int J Cancer ; 128(7): 1505-8, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21280032

RESUMO

Targeting neoangiogenesis is a well-established anticancer strategy, however, one of the major problems in angiogenesis research, both at the basic and applied levels, remains the development of suitable in vivo methods for assessing and quantifying the systemic angiogenic response. Therefore, there is an urgent need to adopt technically simple and reproducible methodologies which allow to easily quantify neoangiogenesis independently of morphological parameters. Recently, a reproducible and quantitative method was developed, the directed in vivo angiogenesis assay (DIVAA) consisting of the subcutaneous implantation of surgical grade silicone cylinders closed at one end, called angioreactors, into the dorsal flanks of nude mice. In the past few years, DIVAA has been successfully used in evaluating the inhibition and or enhancement of systemic perturbation of angiogenesis by several molecules. Thus, DIVAA studies systemic angiogenesis and its therapeutic modulation associated to cancer progression and metastasis.


Assuntos
Neoplasias/patologia , Neovascularização Patológica , Animais , Antineoplásicos/farmacologia , Pesquisa Biomédica/tendências , Modelos Animais de Doenças , Progressão da Doença , Humanos , Oncologia/métodos , Camundongos , Metástase Neoplásica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA