Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Chem Rev ; 122(10): 9795-9847, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35446555

RESUMO

Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.


Assuntos
Núcleo Celular , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos
2.
Phys Chem Chem Phys ; 26(6): 5669-5682, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38288878

RESUMO

Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.

3.
Solid State Nucl Magn Reson ; 123: 101850, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592488

RESUMO

We show that multidimensional solid-state NMR 13C-13C correlation spectra of biomolecular assemblies and microcrystalline organic molecules can be acquired at natural isotopic abundance with only milligram quantities of sample. These experiments combine fast Magic Angle Spinning of the sample, low-power dipolar recoupling, and dynamic nuclear polarization performed with AsymPol biradicals, a recently introduced family of polarizing agents. Such experiments are essential for structural characterization as they provide short- and long-range distance information. This approach is demonstrated on diverse sample types, including polyglutamine fibrils implicated in Huntington's disease and microcrystalline ampicillin, a small antibiotic molecule.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
4.
Angew Chem Int Ed Engl ; 61(12): e202114103, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35019217

RESUMO

Efficiently hyperpolarizing proton-dense molecular solids through dynamic nuclear polarization (DNP) solid-state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton-rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol-POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U-13 C,15 N-labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol-POK is rationalized by MAS-DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of 13 C-13 C and 15 N-13 C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.


Assuntos
Prótons , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Preparações Farmacêuticas
5.
Phys Chem Chem Phys ; 23(24): 13768-13769, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34115087

RESUMO

Correction for 'De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization' by Frédéric Mentink-Vigier et al., Phys. Chem. Chem. Phys., 2019, 21, 2166-2176, DOI: 10.1039/C8CP06819D.

6.
Magn Reson Chem ; 59(9-10): 991-1008, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33624858

RESUMO

Detecting proximities between nuclei is crucial for atomic-scale structure determination with nuclear magnetic resonance (NMR) spectroscopy. Different from spin-1/2 nuclei, the methodology for quadrupolar nuclei is limited for solids due to the complex spin dynamics under simultaneous magic-angle spinning (MAS) and radio-frequency irradiation. Herein, the performances of several homonuclear rotary recoupling (HORROR)-based homonuclear dipolar recoupling sequences are evaluated for 27 Al (spin-5/2). It is shown numerically and experimentally on mesoporous alumina that BR 2 2 1 outperforms the supercycled S3 sequence and its pure double-quantum (DQ) (bracketed) version, [S3 ], both in terms of DQ transfer efficiency and bandwidth. This result is surprising since the S3 sequence is among the best low-power recoupling schemes for spin-1/2. The superiority of BR 2 2 1 is thoroughly explained, and the crucial role of radio-frequency offsets during its spin dynamics is highlighted. The analytical approximation of BR 2 2 1 , derived in an offset-toggling frame, clarifies the interplay between offset and DQ efficiency, namely, the benefits of off-resonance irradiation and the trough in DQ efficiency for BR 2 2 1 when the irradiation is central between two resonances, both for spin-1/2 and half-integer-spin quadrupolar nuclei. Additionally, density matrix propagations show that the BR 2 2 1 sequence, applied to quadrupolar nuclei subject to quadrupolar interaction much larger than radio-frequency frequency field, can create single- and multiple-quantum coherences for near on-resonance irradiation. This significantly perturbs the creation of DQ coherences between central transitions of neighboring quadrupolar nuclei. This effect explains the DQ efficiency trough for near on-resonance irradiation, in the case of both cross-correlation and autocorrelation peaks. Overall, this work aids experimental acquisition of homonuclear dipolar correlation spectra of half-integer-spin quadrupolar nuclei and provides theoretical insights towards improving recoupling schemes at high magnetic field and fast MAS.

7.
Phys Chem Chem Phys ; 21(4): 2166-2176, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644474

RESUMO

Magic angle spinning dynamic nuclear polarization (MAS-DNP) has become a key approach to boost the intrinsic low sensitivity of NMR in solids. This method relies on the use of both stable radicals as polarizing agents (PAs) and suitable high frequency microwave irradiation to hyperpolarize nuclei of interest. Relating PA chemical structure to DNP efficiency has been, and is still, a long-standing problem. The complexity of the polarization transfer mechanism has so far limited the impact of analytical derivation. However, recent numerical approaches have profoundly improved the basic understanding of the phenomenon and have now evolved to a point where they can be used to help design new PAs. In this work, the potential of advanced MAS-DNP simulations combined with DFT calculations and high-field EPR to qualitatively and quantitatively predict hyperpolarization efficiency of particular PAs is analyzed. This approach is demonstrated on AMUPol and TEKPol, two widely-used bis-nitroxide PAs. The results notably highlight how the PA structure and EPR characteristics affect the detailed shape of the DNP field profile. We also show that refined simulations of this profile using the orientation dependency of the electron spin-lattice relaxation times can be used to estimate the microwave B1 field experienced by the sample. Finally, we show how modelling the nuclear spin-lattice relaxation times of close and bulk nuclei while accounting for PA concentration allows for a prediction of DNP enhancement factors and hyperpolarization build-up times.

8.
Angew Chem Int Ed Engl ; 58(48): 17163-17168, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31482605

RESUMO

The unambiguous characterization of the coordination chemistry of nanocrystal surfaces produced by wet-chemical synthesis presently remains highly challenging. Here, zinc oxide nanocrystals (ZnO NCs) coated by monoanionic diphenyl phosphate (DPP) ligands were derived by a sol-gel process and a one-pot self-supporting organometallic (OSSOM) procedure. Atomic-scale characterization through dynamic nuclear polarization (DNP-)enhanced solid-state NMR (ssNMR) spectroscopy has notably enabled resolving their vastly different surface-ligand interfaces. For the OSSOM-derived NCs, DPP moieties form stable and strongly-anchored µ2 - and µ3 -bridging-ligand pairs that are resistant to competitive ligand exchange. The sol-gel-derived NCs contain a wide variety of coordination modes of DPP ligands and a ligand exchange process takes place between DPP and glycerol molecules. This highlights the power of DNP-enhanced ssNMR for detailed NC surface analysis and of the OSSOM approach for the preparation of ZnO NCs.

9.
J Am Chem Soc ; 140(44): 14576-14580, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30339373

RESUMO

A pathological hallmark of Huntington's disease (HD) is the formation of neuronal protein deposits containing mutant huntingtin fragments with expanded polyglutamine (polyQ) domains. Prior studies have shown the strengths of solid-state NMR (ssNMR) to probe the atomic structure of such aggregates, but have required in vitro isotopic labeling. Herein, we present an approach for the structural fingerprinting of fibrils through ssNMR at natural isotopic abundance (NA). These methods will enable the spectroscopic fingerprinting of unlabeled (e.g., ex vivo) protein aggregates and the extraction of valuable new long-range 13C-13C distance constraints.


Assuntos
Proteína Huntingtina/química , Ressonância Magnética Nuclear Biomolecular , Isótopos de Carbono , Humanos , Isótopos de Nitrogênio , Tamanho da Partícula , Agregados Proteicos , Conformação Proteica
10.
J Am Chem Soc ; 140(35): 11013-11019, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30095255

RESUMO

We introduce a new family of highly efficient polarizing agents for dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) applications, composed of asymmetric bis-nitroxides, in which a piperidine-based radical and a pyrrolinoxyl or a proxyl radical are linked together. The design of the AsymPol family was guided by the use of advanced simulations that allow computation of the impact of the radical structure on DNP efficiency. These simulations suggested the use of a relatively short linker with the intention to generate a sizable intramolecular electron dipolar coupling/ J-exchange interaction, while avoiding parallel nitroxide orientations. The characteristics of AsymPol were further tuned, for instance with the addition of a conjugated carbon-carbon double bond in the 5-membered ring to improve the rigidity and provide a favorable relative orientation, the replacement of methyls by spirocyclohexanolyl groups to slow the electron spin relaxation, and the introduction of phosphate groups to yield highly water-soluble dopants. An in-depth experimental and theoretical study for two members of the family, AsymPol and AsymPolPOK, is presented here. We report substantial sensitivity gains at both 9.4 and 18.8 T. The robust efficiency of this new family is further demonstrated through high-resolution surface characterization of an important industrial catalyst using fast sample spinning at 18.8 T. This work highlights a new direction for polarizing agent design and the critical importance of computations in this process.


Assuntos
Desenho Assistido por Computador , Compostos Orgânicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Orgânicos/síntese química
11.
Phys Chem Chem Phys ; 19(5): 3506-3522, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093594

RESUMO

A deeper understanding of parameters affecting Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP), an emerging nuclear magnetic resonance hyperpolarization method, is crucial for the development of new polarizing agents and the successful implementation of the technique at higher magnetic fields (>10 T). Such progress is currently impeded by computational limitation which prevents the simulation of large spin ensembles (electron as well as nuclear spins) and to accurately describe the interplay between all the multiple key parameters at play. In this work, we present an alternative approach to existing cross-effect and solid-effect MAS-DNP codes that yields fast and accurate simulations. More specifically we describe the model, the associated Liouville-based formalism (Bloch-type derivation and/or Landau-Zener approximations) and the linear time algorithm that allows computing MAS-DNP mechanisms with unprecedented time savings. As a result, one can easily scan through multiple parameters and disentangle their mutual influences. In addition, the simulation code is able to handle multiple electrons and protons, which allows probing the effect of (hyper)polarizing agents concentration, as well as fully revealing the interplay between the polarizing agent structure and the hyperfine couplings, nuclear dipolar couplings, nuclear relaxation times, both in terms of depolarization effect, but also of polarization gain and buildup times.

12.
J Am Chem Soc ; 137(43): 13796-9, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26485326

RESUMO

NMR crystallography of organic molecules at natural isotopic abundance (NA) strongly relies on the comparison of assigned experimental and computed NMR chemical shifts. However, a broad applicability of this approach is often hampered by the still limited (1)H resolution and/or difficulties in assigning (13)C and (15)N resonances without the use of structure-based chemical shift calculations. As shown here, such difficulties can be overcome by (13)C-(13)C and for the first time (15)N-(13)C correlation experiments, recorded with the help of dynamic nuclear polarization. We present the complete de novo (13)C and (15)N resonance assignment at NA of a self-assembled 2'-deoxyguanosine derivative presenting two different molecules in the asymmetric crystallographic unit cell. This de novo assignment method is exclusively based on aforementioned correlation spectra and is an important addition to the NMR crystallography approach, rendering firstly (1)H assignment straightforward, and being secondly a prerequisite for distance measurements with solid-state NMR.

13.
Chemistry ; 21(45): 16047-58, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26395201

RESUMO

Silicon nanoparticles (NPs) serve a wide range of optical, electronic, and biological applications. Chemical grafting of various molecules to Si NPs can help to passivate their reactive surfaces, "fine-tune" their properties, or even give them further interesting features. In this work, (1) H, (13) C, and (29) Si solid-state NMR spectroscopy has been combined with density functional theory calculations to study the surface chemistry of hydride-terminated and alkyl-functionalized Si NPs. This combination of techniques yields assignments for the observed chemical shifts, including the contributions resulting from different surface planes, and highlights the presence of physisorbed water. Resonances from near-surface (13) C nuclei were shown to be substantially broadened due to surface disorder and it is demonstrated that in an ambient environment hydride-terminated Si NPs undergo fast back-bond oxidation, whereas long-chain alkyl-functionalized Si NPs undergo slow oxidation. Furthermore, the combination of NMR spectroscopy and DFT calculations showed that the employed hydrosilylation reaction involves anti-Markovnikov addition of the 1-alkene to the surface of the Si NPs.

14.
Chemistry ; 21(12): 4512-7, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25663569

RESUMO

Magic-angle spinning dynamic nuclear polarization (MAS-DNP) has been proven to be a powerful technique to enhance the sensitivity of solid-state NMR (SSNMR) in a wide range of systems. Here, we show that DNP can be used to polarize lipids using a lipid-anchored polarizing agent. More specifically, we introduce a C16-functionalized biradical, which allows localization of the polarizing agents in the lipid bilayer and DNP experiments to be performed in the absence of excess cryo-protectant molecules (glycerol, dimethyl sulfoxide, etc.). This constitutes another original example of the matrix-free DNP approach that we recently introduced.


Assuntos
Radicais Livres/química , Lipossomos/química , Óxidos N-Cíclicos/química , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Propanóis/química
15.
Phys Chem Chem Phys ; 17(34): 21824-36, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235749

RESUMO

Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals.

16.
Solid State Nucl Magn Reson ; 66-67: 6-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779337

RESUMO

The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP.

17.
J Am Chem Soc ; 136(39): 13781-8, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25153717

RESUMO

Silica (SiO2) nanoparticles (NPs) were functionalized by silanization to produce a surface covered with organosiloxanes. Information about the surface coverage and the nature, if any, of organosiloxane polymerization, whether parallel or perpendicular to the surface, is highly desired. To this extent, two-dimensional homonuclear (29)Si solid-state NMR could be employed. However, owing to the sensitivity limitations associated with the low natural abundance (4.7%) of (29)Si and the difficulty and expense of isotopic labeling here, this technique would usually be deemed impracticable. Nevertheless, we show that recent developments in the field of dynamic nuclear polarization under magic angle spinning (MAS-DNP) could be used to dramatically increase the sensitivity of the NMR experiments, resulting in a timesaving factor of ∼625 compared to conventional solid-state NMR. This allowed the acquisition of previously infeasible data. Using both through-space and through-bond 2D (29)Si-(29)Si correlation experiments, it is shown that the required reaction conditions favor lateral polymerization and domain growth. Moreover, the natural abundance correlation experiments permitted the estimation of (2)J(Si-O-Si)-couplings (13.8 ± 1.4 Hz for surface silica) and interatomic distances (3.04 ± 0.08 Å for surface silica) since complications associated with many-spin systems and also sensitivity were avoided. The work detailed herein not only demonstrates the possibility of using MAS-DNP to greatly facilitate the acquisition of 2D (29)Si-(29)Si correlation spectra but also shows that this technique can be used in a routine fashion to characterize surface grafting networks and gain structural constraints, which can be related to a system's chemical and physical properties.

18.
J Am Chem Soc ; 135(13): 5105-10, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23362837

RESUMO

Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.


Assuntos
Bactérias/química , Parede Celular/química , Espectroscopia de Ressonância Magnética , Parede Celular/metabolismo , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/metabolismo , Modelos Biológicos , Peptidoglicano/química , Propanóis/química , Propanóis/metabolismo
19.
Annu Rev Phys Chem ; 63: 661-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22404583

RESUMO

Solid-state nuclear magnetic resonance (SSNMR) magic angle spinning (MAS) can be used to record high-resolution data dominated by site-specific information. Although MAS introduces high resolution by attenuating the anisotropic broadening, it also suppresses the nuclear dipole-dipole distance information that is the source of most structural data in the spectra. Such information can be reintroduced coherently and thus selectively by the application of a carefully chosen sequence of radiofrequency pulses, an approach that was introduced 20 years ago and is referred to as dipolar recoupling. This review presents the establishment of recoupling techniques in SSNMR and recalls the major steps achieved by the community throughout the last two decades. This review also presents emerging techniques and their corresponding new concepts. Finally, we present some recent developments based on second-order recoupling mechanisms and discuss their implications regarding dipolar truncation and the possibility to extract structural constraints in uniformly labeled systems.

20.
Commun Chem ; 6(1): 58, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977767

RESUMO

Studying the surface chemistry of functionalized cellulose nanofibrils at atomic scale is an ongoing challenge, mainly because FT-IR, NMR, XPS and RAMAN spectroscopy are limited in sensitivity or resolution. Herein, we show that dynamic nuclear polarization (DNP) enhanced 13C and 15N solid-state NMR is a uniquely suited technique to optimize the drug loading on nanocellulose using aqueous heterogenous chemistry. We compare the efficiency of two conventional coupling agents (DMTMM vs EDC/NHS) to bind a complex prodrug of ciprofloxacin designed for controlled drug release. Besides quantifying the drug grafting, we also evidence the challenge to control the concurrent prodrug adsorption and to optimize washing procedures. We notably highlight the presence of an unexpected prodrug cleavage mechanism triggered by carboxylates at the surface of the cellulose nanofibrils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA