Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 16(11): 1174-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414764

RESUMO

Human regulatory T cells (T(reg) cells) that develop from conventional T cells (T(conv) cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced T(reg) cells (iT(reg) cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iT(reg) cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2-related suppressive activity of iT(reg) cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of T(reg) cells in health and in autoimmunity.


Assuntos
Fatores de Transcrição Forkhead/genética , Glicólise/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adulto , Processamento Alternativo , Autoimunidade , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD4-Positivos/classificação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Ácidos Graxos/metabolismo , Feminino , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Silenciamento de Genes , Variação Genética , Humanos , Técnicas In Vitro , Masculino , Metaboloma , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Oxirredução , Fosfopiruvato Hidratase/antagonistas & inibidores , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/classificação , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
2.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240305

RESUMO

This Editorial highlights the various observations made in the Special Issue of the International Journal of Molecular Sciences on "Recent Advances in Biochemistry and Molecular Biology of Infectious Diseases" [...].


Assuntos
Doenças Transmissíveis , Biologia Molecular , Humanos , Bioquímica
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983046

RESUMO

Leishmaniasis represents a complex of diseases with a broad clinical spectrum and epidemiological diversity, considered a major public health problem. Although there is treatment, there are still no vaccines for cutaneous leishmaniasis. Because Leishmania spp. is an intracellular protozoan with several escape mechanisms, a vaccine must provoke cellular and humoral immune responses. Previously, we identified the Leishmania homolog of receptors for activated C kinase (LACK) and phosphoenolpyruvate carboxykinase (PEPCK) proteins as strong immunogens and candidates for the development of a vaccine strategy. The present work focuses on the in silico prediction and characterization of antigenic epitopes that might interact with mice or human major histocompatibility complex class I. After immunogenicity prediction on the Immune Epitope Database (IEDB) and the Database of MHC Ligands and Peptide Motifs (SYFPEITHI), 26 peptides were selected for interaction assays with infected mouse lymphocytes by flow cytometry and ELISpot. This strategy identified nine antigenic peptides (pL1-H2, pPL3-H2, pL10-HLA, pP13-H2, pP14-H2, pP15-H2, pP16-H2, pP17-H2, pP18-H2, pP26-HLA), which are strong candidates for developing a peptide vaccine against leishmaniasis.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Epitopos , Antígenos de Histocompatibilidade Classe I , Antígenos HLA , Leishmania/metabolismo , Peptídeos/química , Vacinas de Subunidades Antigênicas , Complexo Principal de Histocompatibilidade
4.
Curr Issues Mol Biol ; 44(5): 2089-2106, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678670

RESUMO

Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.

5.
Proc Natl Acad Sci U S A ; 116(31): 15625-15634, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308239

RESUMO

Chronic obstructive pulmonary disease (COPD) is an inflammatory condition associated with abnormal immune responses, leading to airflow obstruction. Lungs of COPD subjects show accumulation of proinflammatory T helper (Th) 1 and Th17 cells resembling that of autoreactive immune responses. As regulatory T (Treg) cells play a central role in the control of autoimmune responses and their generation and function are controlled by the adipocytokine leptin, we herein investigated the association among systemic leptin overproduction, reduced engagement of glycolysis in T cells, and reduced peripheral frequency of Treg cells in different COPD stages. These phenomena were also associated with an impaired capacity to generate inducible Treg (iTreg) cells from conventional T (Tconv) cells. At the molecular level, we found that leptin inhibited the expression of forkhead-boxP3 (FoxP3) and its splicing variants containing the exon 2 (FoxP3-E2) that correlated inversely with inflammation and weakened lung function during COPD progression. Our data reveal that the immunometabolic pathomechanism leading to COPD progression is characterized by leptin overproduction, a decline in the expression of FoxP3 splicing forms, and an impairment in Treg cell generation and function. These results have potential implications for better understanding the autoimmune-like nature of COPD and the pathogenic events leading to lung damage.


Assuntos
Processamento Alternativo/imunologia , Fatores de Transcrição Forkhead , Leptina , Doença Pulmonar Obstrutiva Crônica , Linfócitos T Reguladores , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/imunologia , Humanos , Leptina/biossíntese , Leptina/imunologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/patologia
6.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409149

RESUMO

Hemopexin (Hx) is a plasma glycoprotein that scavenges heme (Fe(III) protoporphyrin IX). Hx has important implications in hemolytic disorders and hemorrhagic conditions because releasing hemoglobin increases the labile heme, which is potentially toxic, thus producing oxidative stress. Therefore, Hx has been considered for therapeutic use and diagnostics. In this work, we analyzed and mapped the interaction sequences of Hx with hemin and hemoglobin. The spot-synthesis technique was used to map human hemopexin (P02790) binding to hemin and human hemoglobin. A library of 15 amino acid peptides with a 10-amino acid overlap was designed to represent the entire coding region (aa 1-462) of hemopexin and synthesized onto cellulose membranes. An in silico approach was taken to analyze the amino acid frequency in the identified interaction regions, and molecular docking was applied to assess the protein-protein interaction. Seven linear peptide sequences in Hx were identified to bind hemin (H1-H7), and five were described for Hb (Hb1-Hb5) interaction, with just two sequences shared between hemin and Hb. The amino acid composition of the identified sequences demonstrated that histidine residues are relevant for heme binding. H105, H293, H373, H400, H429, and H462 were distributed in the H1-H7 peptide sequences, but other residues may also play an important role. Molecular docking analysis demonstrated Hx's association with the ß-chain of Hb, with several hotspot amino acids that coordinated the interaction. This study provides new insights into Hx-hemin binding motifs and protein-protein interactions with Hb. The identified binding sequences and specific peptides can be used for therapeutic purposes and diagnostics as hemopexin is under investigation to treat different diseases and there is an urgent need for diagnostics using labile heme when monitoring hemolysis.


Assuntos
Hemina , Hemopexina , Compostos Férricos , Heme/metabolismo , Hemina/metabolismo , Hemoglobinas/metabolismo , Hemólise , Hemopexina/metabolismo , Histidina , Humanos , Simulação de Acoplamento Molecular
7.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613974

RESUMO

Oral immunization with the choleric toxin (CT) elicits a high level of protection against its enterotoxin activities and can control cholera in endemic settings. However, the complete B-cell epitope map of the CT that is responsible for protection remains to be clarified. A library of one-hundred, twenty-two 15-mer peptides covering the entire sequence of the three chains of the CT protein (CTP) was prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice vaccinated with an oral inactivated vaccine (Schankol™) allowed the mapping of continuous B-cell epitopes, topological studies, multi-antigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Eighteen IgG epitopes were identified; eight in the CTA, three in the CTB, and seven in the protein P. Three V. cholera specific epitopes, Vc/TxA-3, Vc/TxB-11, and Vc/TxP-16, were synthesized as MAP4 and used to coat ELISA plates in order to screen immunized mouse sera. Sensitivities and specificities of 100% were obtained with the MAP4s of Vc/TxA-3 and Vc/TxB-11. The results revealed a set of peptides whose immunoreactivity reflects the immune response to vaccination. The array of peptide data can be applied to develop improved serological tests in order to detect cholera toxin exposure, as well as next generation vaccines to induce more specific antibodies against the cholera toxin.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae , Animais , Camundongos , Vibrio cholerae/metabolismo , Toxina da Cólera/metabolismo , Epitopos de Linfócito B , Mapeamento de Epitopos , Ensaio de Imunoadsorção Enzimática , Anticorpos Antibacterianos
8.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807244

RESUMO

BACKGROUND: Health care-associated infections (HAIs) are a significant public health problem worldwide, favoring multidrug-resistant (MDR) microorganisms. The SARS-CoV-2 infection was negatively associated with the increase in antimicrobial resistance, and the ESKAPE group had the most significant impact on HAIs. The study evaluated the bactericidal effect of a high concentration of O3 gas on some reference and ESKAPE bacteria. MATERIAL AND METHODS: Four standard strains and four clinical or environmental MDR strains were exposed to elevated ozone doses at different concentrations and times. Bacterial inactivation (growth and cultivability) was investigated using colony counts and resazurin as metabolic indicators. Scanning electron microscopy (SEM) was performed. RESULTS: The culture exposure to a high level of O3 inhibited the growth of all bacterial strains tested with a statistically significant reduction in colony count compared to the control group. The cell viability of S. aureus (MRSA) (99.6%) and P. aeruginosa (XDR) (29.2%) was reduced considerably, and SEM showed damage to bacteria after O3 treatment Conclusion: The impact of HAIs can be easily dampened by the widespread use of ozone in ICUs. This product usually degrades into molecular oxygen and has a low toxicity compared to other sanitization products. However, high doses of ozone were able to interfere with the growth of all strains studied, evidencing that ozone-based decontamination approaches may represent the future of hospital cleaning methods.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecção Hospitalar , Ozônio , Antibacterianos/farmacologia , Bactérias , Infecção Hospitalar/microbiologia , Humanos , Ozônio/farmacologia , Pseudomonas aeruginosa , SARS-CoV-2 , Staphylococcus aureus
9.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445741

RESUMO

(1) Background: coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to hematological dysfunctions, but there are little experimental data that explain this. Spike (S) and Nucleoprotein (N) proteins have been putatively associated with these dysfunctions. In this work, we analyzed the recruitment of hemoglobin (Hb) and other metabolites (hemin and protoporphyrin IX-PpIX) by SARS-Cov2 proteins using different approaches. (2) Methods: shotgun proteomics (LC-MS/MS) after affinity column adsorption identified hemin-binding SARS-CoV-2 proteins. The parallel synthesis of the peptides technique was used to study the interaction of the receptor bind domain (RBD) and N-terminal domain (NTD) of the S protein with Hb and in silico analysis to identify the binding motifs of the N protein. The plaque assay was used to investigate the inhibitory effect of Hb and the metabolites hemin and PpIX on virus adsorption and replication in Vero cells. (3) Results: the proteomic analysis by LC-MS/MS identified the S, N, M, Nsp3, and Nsp7 as putative hemin-binding proteins. Six short sequences in the RBD and 11 in the NTD of the spike were identified by microarray of peptides to interact with Hb and tree motifs in the N protein by in silico analysis to bind with heme. An inhibitory effect in vitro of Hb, hemin, and PpIX at different levels was observed. Strikingly, free Hb at 1mM suppressed viral replication (99%), and its interaction with SARS-CoV-2 was localized into the RBD region of the spike protein. (4) Conclusions: in this study, we identified that (at least) five proteins (S, N, M, Nsp3, and Nsp7) of SARS-CoV-2 recruit Hb/metabolites. The motifs of the RDB of SARS-CoV-2 spike, which binds Hb, and the sites of the heme bind-N protein were disclosed. In addition, these compounds and PpIX block the virus's adsorption and replication. Furthermore, we also identified heme-binding motifs and interaction with hemin in N protein and other structural (S and M) and non-structural (Nsp3 and Nsp7) proteins.


Assuntos
COVID-19/etiologia , Hemoglobinas/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , COVID-19/sangue , Hemina/metabolismo , Hemoglobinas/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Proteômica , Protoporfirinas/metabolismo , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/ultraestrutura , Proteínas Estruturais Virais/ultraestrutura , Ligação Viral , Replicação Viral
10.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203140

RESUMO

INTRODUCTION: Snakebite envenomation is considered a neglected tropical disease, and SVTLEs critical elements are involved in serious coagulopathies that occur on envenoming. Although some enzymes of this group have been structurally investigated, it is essential to characterize other proteins to better understand their unique properties such as the Lachesis muta rhombeata 47 kDa (Lmr-47) venom serine protease. METHODS: The structure of Lmr-47 was studied in solution, using SAXS, DLS, CD, and in silico by homology modeling. Molecular docking experiments simulated 21 competitive inhibitors. RESULTS: At pH 8.0, Lmr-47 has an Rg of 34.5 ± 0.6 Å, Dmax of 130 Å, and SR of 50 Å, according to DLS data. Kratky plot analysis indicates a rigid shape at pH 8.0. Conversely, the pH variation does not change the center of mass's intrinsic fluorescence, possibly indicating the absence of fluorescent amino acids in the regions affected by pH variation. CD experiments show a substantially random coiled secondary structure not affected by pH. The low-resolution model of Lmr-47 presented a prolate elongated shape at pH 8.0. Using the 3D structure obtained by molecular modeling, docking experiments identified five good and three suitable competitive inhibitors. CONCLUSION: Together, our work provided insights into the structure of the Lmr-47 and identified inhibitors that may enhance our understanding of thrombin-like family proteins.


Assuntos
Venenos de Crotalídeos/enzimologia , Crotalinae , Simulação de Acoplamento Molecular , Proteínas de Répteis/química , Trombina/química , Animais , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770849

RESUMO

HSV infections, both type 1 and type 2, are among the most widespread viral diseases affecting people of all ages. Their symptoms could be mild, with cold sores up to 10 days of infection, blindness and encephalitis caused by HSV-1 affecting immunocompetent and immunosuppressed individuals. The severe effects derive from co-evolution with the host, resulting in immune evasion mechanisms, including latency and growing resistance to acyclovir and derivatives. An efficient alternative to controlling the spreading of HSV mutations is the exploitation of new drugs, and the possibility of enhancing their delivery through the encapsulation of drugs into nanoparticles, such as liposomes. In this work, liposomes were loaded with a series of 2-aminomethyl- 3-hydroxy-1,4-naphthoquinones derivatives with n-butyl (compound 1), benzyl (compound 2) and nitrobenzene (compound 3) substituents in the primary amine of naphthoquinone. They were previously identified to have significant inhibitory activity against HSV-1. All of the aminomethylnaphthoquinones derivatives encapsulated in the phosphatidylcholine liposomes were able to control the early and late phases of HSV-1 replication, especially those substituted with the benzyl (compound 2) and nitrobenzene (compound 3), which yields selective index values that are almost nine times more efficient than acyclovir. The growing interest of the industry in topical administration against HSV supports our choice of liposome as a drug carrier of aminomethylnaphthoquinones derivatives for formulations of in vivo pre-clinical assays.


Assuntos
Antivirais/química , Antivirais/farmacologia , Lipossomos , Naftoquinonas/química , Naftoquinonas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Portadores de Fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Estrutura Molecular , Nanopartículas , Células Vero
12.
Anal Biochem ; 561-562: 27-31, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218639

RESUMO

The availability of purified antibodies is a prerequisite for many applications and the appropriate choice(s) for antibody-purification is crucial. Numerous methods have been developed for the purification of antibodies from different sources with affinity chromatography-based methods being the most extensively utilized. These methods are based on high specificity, easy reversibility and biological interactions between two molecules (e.g., between receptor and ligand or antibody and antigen). However, no simple techniques have yet been described to characterize and purify subclasses of immunoglobulins (Ig) from some animals of biotechnology importance such as equines, which are frequently used to produce biotherapeutic antibodies. The sera of these animals present a large number of Ig classes that have a greater complexity than other animals. The implementation of an effective protocol to purify the desired antibody class/subclasses requires meticulous planning to achieve yields at a high purity. The IgG3 subclass of equine-Ig has recently been used as antigen in a new diagnostic test for allergic responses to horse sera-based therapies. Here, we defined a simple method using Jacalin lectin immobilized on Sepharose beads to prepare highly pure equine IgG3 antibodies with a determination of the affinity constants for Jacalin lectin and horse IgG3.


Assuntos
Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Lectinas/química , Temperatura , Animais , Cromatografia de Afinidade , Cavalos , Imunoglobulina G/imunologia , Lectinas/imunologia , Lectinas de Plantas/química
13.
Anal Biochem ; 538: 13-19, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919435

RESUMO

Antivenom allergy disease mediated by patient IgE is an important public health care concern. To improve detection of hypersensitive individuals prior to passive antibody therapy, an amperometric immunosensor was developed to detect reactive human IgE. Whole horse IgG3 (hoIgG3) was immobilized onto the surface of carbon or gold screen-printed electrodes through a cross-linking solution of glutaraldehyde on a chitosan film. Sera from persons with a known allergic response to hoIgG3 or non-allergic individuals was applied to the sensor. Bound human IgE (humIgE) was detected by an anti-humIgE antibody through a quantitative amperometric determination by tracking via the electrochemical reduction of the quinone generated from the hydroquinone with the application of a potential of 25 mV. The optimal immunosensor configuration detected reactive humIgE at a dilution of 1:1800 of the human sera that represent a detection limit of 0.5 pg/mL. Stability testing demonstrated that through 20 cycles of a scan, the specificity and performance remained robust. The new immunosensor successfully detected humIgE antibodies reactive against hoIgG3, which could allow the diagnosis of potential allergenic patients needing therapeutic antivenom preparations from a horse.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Imunoensaio/métodos , Imunoglobulina E/análise , Animais , Anticorpos Anti-Idiotípicos/imunologia , Quitosana/química , Eletrodos , Ouro/química , Cavalos , Humanos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Limite de Detecção , Reprodutibilidade dos Testes
14.
Parasitology ; 144(4): 536-545, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28031079

RESUMO

Leishmaniasis are diseases caused by parasites of the genus Leishmania and transmitted to humans by the bite of infected insects of the subfamily Phlebotominae. Current drug therapy shows high toxicity and severe adverse effects. Recently, two oligopeptidases (OPBs) were identified in Leishmania amazonensis, namely oligopeptidase B (OPB) and oligopeptidase B2 (OPB2). These OPBs could be ideal targets, since both enzymes are expressed in all parasite lifecycle and were not identified in human. This work aimed to identify possible dual inhibitors of OPB and OPB2 from L. amazonensis. The three-dimensional structures of both enzymes were built by comparative modelling and used to perform a virtual screening of ZINC database by DOCK Blaster server. It is the first time that OPB models from L. amazonensis are used to virtual screening approach. Four hundred compounds were identified as possible inhibitors to each enzyme. The top scored compounds were submitted to refinement by AutoDock program. The best results suggest that compounds interact with important residues, as Tyr490, Glu612 and Arg655 (OPB numbers). The identified compounds showed better results than antipain and drugs currently used against leishmaniasis when ADMET in silico were performed. These compounds could be explored in order to find dual inhibitors of OPB and OPB2 from L. amazonensis.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania/enzimologia , Proteínas de Protozoários/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Sítios de Ligação , Simulação por Computador , Bases de Dados Factuais , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/genética , Serina Endopeptidases/genética , Software
15.
Brain Behav Immun ; 43: 37-45, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25014011

RESUMO

Leishmaniasis is a parasitosis caused by several species of the genus Leishmania, an obligate intramacrophagic parasite. Although neurologic symptoms have been observed in human cases of leishmaniasis, the manifestation of neurodegenerative processes is poorly studied. The aim of the present work was to investigate if peripheral infection of BALB/c mice with Leishmania amazonensis affects tau phosphorylation and RAGE protein content in the brain, which represent biochemical markers of neurodegenerative processes observed in diseases with a pro-inflammatory component, including Alzheimer's disease and Down syndrome. Four months after a single right hind footpad subcutaneous injection of L. amazonensis, the brain cortex of BALB/c mice was isolated. Western blot analysis indicated an increase in tau phosphorylation (Ser(396)) and RAGE immunocontent in infected animals. Brain tissue TNF-α, IL-1ß, and IL-6 levels were not different from control animals; however, increased protein carbonylation, decreased IFN-γ levels and impairment in antioxidant defenses were detected. Systemic antioxidant treatment (NAC 20mg/kg, i.p.) inhibited tau phosphorylation and recovered IFN-γ levels. These data, altogether, indicate an association between impaired redox state, tau phosphorylation and RAGE up-regulation in the brain cortex of animals infected with L. amazonensis. In this context, it is possible that neurologic symptoms associated to chronic leishmaniasis are associated to disruptions in the homeostasis of CNS proteins, such as tau and RAGE, as consequence of oxidative stress. This is the first demonstration of alterations in biochemical parameters of neurodegeneration in an experimental model of Leishmania infection.


Assuntos
Encéfalo/parasitologia , Leishmania mexicana , Leishmaniose/metabolismo , Receptores Imunológicos/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/fisiologia , Fosforilação , Receptor para Produtos Finais de Glicação Avançada , Regulação para Cima
16.
Infect Drug Resist ; 17: 507-529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348231

RESUMO

Acinetobacter pneumonia is a significant healthcare-associated infection that poses a considerable challenge to clinicians due to its multidrug-resistant nature. Recent world events, such as the COVID-19 pandemic, have highlighted the need for effective treatment and management strategies for Acinetobacter pneumonia. In this review, we discuss lessons learned from recent world events, particularly the COVID-19 pandemic, in the context of the treatment and management of Acinetobacter pneumonia. We performed an extensive literature review to uncover studies and information pertinent to the topic. The COVID-19 pandemic underscored the importance of infection control measures in healthcare settings, including proper hand hygiene, isolation protocols, and personal protective equipment use, to prevent the spread of multidrug-resistant pathogens like Acinetobacter. Additionally, the pandemic highlighted the crucial role of antimicrobial stewardship programs in optimizing antibiotic use and curbing the emergence of resistance. Advances in diagnostic techniques, such as rapid molecular testing, have also proven valuable in identifying Acinetobacter infections promptly. Furthermore, due to the limited availability of antibiotics for treating infections caused A. baumannii, alternative strategies are needed like the use of antimicrobial peptides, bacteriophages and their enzymes, nanoparticles, photodynamic and chelate therapy. Recent world events, particularly the COVID-19 pandemic, have provided valuable insights into the treatment and management of Acinetobacter pneumonia. These lessons emphasize the significance of infection control, antimicrobial stewardship, and early diagnostics in combating this challenging infection.

17.
Vaccines (Basel) ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675725

RESUMO

The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.

18.
Vaccines (Basel) ; 12(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39066409

RESUMO

HIV-1 has an antisense gene overlapping env that encodes the ASP protein. ASP functions are still unknown, but it has been associated with gp120 in the viral envelope and membrane of infected cells, making it a potential target for immune response. Despite this, immune response patterns against ASP are poorly described and can be influenced by the high genetic variability of the env gene. To explore this, we analyzed 100k HIV-1 ASP sequences from the Los Alamos HIV sequence database using phylogenetic, Shannon entropy (Hs), and logo tools to study ASP variability in worldwide and Brazilian sequences from the most prevalent HIV-1 subtypes in Brazil (B, C, and F1). Data obtained in silico guided the design and synthesis of 15-mer overlapping peptides through spot synthesis on cellulose membranes. Peptide arrays were screened to assess IgG and IgM responses in pooled plasma samples from HIV controllers and individuals with acute or recent HIV infection. Excluding regions with low alignment accuracy, several sites with higher variability (Hs > 1.5) were identified among the datasets (25 for worldwide sequences, 20 for Brazilian sequences). Among sites with Hs < 1.5, sequence logos allowed the identification of 23 other sites with subtype-specific signatures. Altogether, amino acid variations with frequencies > 20% in the 48 variable sites identified were included in 92 peptides, divided into 15 sets, representing near full-length ASP. During the immune screening, the strongest responses were observed in three sets, one in the middle and one at the C-terminus of the protein. While some sets presented variations potentially associated with epitope displacement between IgG and IgM targets and subtype-specific signatures appeared to impact the level of response for some peptides, signals of cross-reactivity were observed for some sets despite the presence of B/C/F1 signatures. Our data provides a map of ASP regions preferentially targeted by IgG and IgM responses. Despite B/C/F1 subtype signatures in ASP, the amino acid variation in some areas preferentially targeted by IgM and IgG did not negatively impact the response against regions with higher immunogenicity.

19.
Sci Rep ; 14(1): 17571, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080325

RESUMO

The molecular mechanisms that govern differential T cell development from CD4+CD25-conventional T (Tconv) into CD4+CD25+ forkhead-box-P3+ (FoxP3+) inducible regulatory T (iTreg) cells remain unclear. Herein, we investigated the relative contribution of protein kinase A (PKA) in this process. Mechanistically, we found that PKA controlled the efficiency of human iTreg cell generation through the expression of different FoxP3 splicing variants containing or not the exon 2. We found that transient PKA inhibition reduced the recruitment of cAMP-responsive element-binding protein (CREB) on regulatory regions of the FoxP3 gene, a condition that is associated with an impaired acquisition of their suppressive capacity in vitro. To corroborate our findings in a human model of autoimmunity, we measured CREB phosphorylation and FoxP3 levels in iTreg cells from treatment-naïve relapsing-remitting (RR)-multiple sclerosis (MS) subjects. Interestingly, both phospho-CREB and FoxP3 induction directly correlated and were significantly reduced in RR-MS patients, suggesting a previously unknown mechanism involved in the induction and function of human iTreg cells.


Assuntos
Autoimunidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Humanos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosforilação , Regulação da Expressão Gênica , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Feminino , Masculino
20.
BMC Infect Dis ; 13: 568, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24299278

RESUMO

BACKGROUND: The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. METHODS: Twenty-two overlapping synthetic peptides representing the coding sequence of the T. cruzi CRA and FRA proteins were assessed by a Spot-synthesis array analysis using sera donated by patients with Chagas disease. Shorter peptides were selected that represented the determined epitopes and synthesized by solid phase synthesis to evaluate the patterns of cross-reactivities and discrimination through an ELISA-diagnostic assay. RESULTS: The peptide Spot-synthesis array successfully identified two IgG antigenic determinants in the CRA protein and four in FRA. Bioinformatics suggested that the CRA antigens were unique to T. cruzi while the FRA antigen showed similarity with sequences present within various proteins from Leishmania sp. Subsequently, shorter peptides representing the CRA-1, CRA-2 and FRA-1 epitopes were synthesized by solid phase synthesis and assayed by an ELISA-diagnostic assay. The CRA antigens gave a high discrimination between Chagasic, Leishmaniasis and T. cruzi-uninfected serum. A sensitivity and specificity of 100% was calculated for CRA. While the FRA antigen showed a slightly lower sensitivity (91.6%), its specificity was only 60%. CONCLUSIONS: The epitopes recognized by human anti-T. cruzi antibodies have been precisely located in two biomarkers of T. cruzi, CRA and FRA. The results from screening a panel of patient sera through an ELISA assay based on peptides representing these epitopes strongly suggest that the sequences from CRA would be useful for the development of diagnostic reagents that could improve upon the sensitivity and specificity of currently available diagnostic tests. Overall, the results provide further evidence of the usefulness of identifying specific linear B-cell epitopes for improving diagnostic tools.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Doença de Chagas/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Trypanosoma cruzi/imunologia , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Doença de Chagas/diagnóstico , Doença de Chagas/imunologia , Ensaio de Imunoadsorção Enzimática/instrumentação , Mapeamento de Epitopos , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mapeamento de Peptídeos , Peptídeos/síntese química , Peptídeos/genética , Peptídeos/imunologia , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA