Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nano Lett ; 24(26): 8117-8125, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38901032

RESUMO

Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.

2.
J Am Chem Soc ; 145(21): 11566-11578, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195086

RESUMO

The primary step in the mechanism by which migratory birds sense the Earth's magnetic field is thought to be the light-induced formation of long-lived magnetically sensitive radical pairs within cryptochrome flavoproteins located in the birds' retinas. Blue-light absorption by the non-covalently bound flavin chromophore triggers sequential electron transfers along a chain of four tryptophan residues toward the photoexcited flavin. The recently demonstrated ability to express cryptochrome 4a from the night-migratory European robin (Erithacus rubecula), ErCry4a, and to replace each of the tryptophan residues by a redox-inactive phenylalanine offers the prospect of exploring the roles of the four tryptophans. Here, we use ultrafast transient absorption spectroscopy to compare wild type ErCry4a and four mutants having a phenylalanine at different positions in the chain. We find that each of the three tryptophan residues closest to the flavin adds a distinct relaxation component (time constants: 0.5, 30, and 150 ps) in the transient absorption data. The dynamics of the mutant containing a phenylalanine at the fourth position, furthest from the flavin, are very similar to those of wild type ErCry4a, except for a reduced concentration of long-lived radical pairs. The experimental results are evaluated and discussed in the framework of real-time quantum mechanical/molecular mechanical electron transfer simulations based on the density functional-based tight binding approach. This comparison between simulation results and experimental measurements provides a detailed microscopic insight into the sequential electron transfers along the tryptophan chain. Our results offer a route to the study of spin transport and dynamical spin correlations in flavoprotein radical pairs.


Assuntos
Criptocromos , Triptofano , Criptocromos/química , Triptofano/química , Elétrons , Transporte de Elétrons , Campos Magnéticos , Flavinas/metabolismo
3.
J Am Chem Soc ; 144(41): 19150-19162, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206456

RESUMO

Squaraines are prototypical quadrupolar charge-transfer chromophores that have recently attracted much attention as building blocks for solution-processed photovoltaics, fluorescent probes with large two-photon absorption cross sections, and aggregates with large circular dichroism. Their optical properties are often rationalized in terms of phenomenological essential state models, considering the coupling of two zwitterionic excited states to a neutral ground state. As a result, optical transitions to the lowest S1 excited state are one-photon allowed, whereas the next higher S2 state can only be accessed by two-photon transitions. A further implication of these models is a substantial reduction of vibronic coupling to the ubiquitous high-frequency vinyl-stretching modes of organic materials. Here, we combine time-resolved vibrational spectroscopy, two-dimensional electronic spectroscopy, and quantum-chemical simulations to test and rationalize these predictions for nonaggregated molecules. We find small Huang-Rhys factors below 0.01 for the high-frequency, 1500 cm-1 modes in particular, as well as a noticeable reduction for those of lower frequency modes in general for the electronic S0 → S1 transition. The two-photon allowed state S2 is well separated energetically from S1 and has weak vibronic signatures as well. Thus, the resulting pronounced concentration of the oscillator strength in a narrow region relevant to the lowest electronic transition makes squaraines and their aggregates exceptionally interesting for strong and ultrastrong coupling of excitons to localized light modes in external resonators with chiral properties that can largely be controlled by the molecular architecture.

4.
Opt Express ; 29(15): 24326-24337, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614680

RESUMO

The separation of incoherent emission signals from coherent light scattering often poses a challenge in (time-resolved) microscopy or excitation-emission spectroscopy. While in spectro-microscopy with narrowband excitation this is commonly overcome using spectral filtering, it is less straightforward when using broadband Fourier-transform techniques that are now becoming commonplace in, e.g., single molecule or ultrafast nonlinear spectroscopy. Here we show that such a separation is readily achieved using highly stable common-path interferometers for both excitation and detection. The approach is demonstrated for suppression of scattering from flavin adenine dinucleotide (FAD) and weakly emissive cryptochrome 4 (Cry4) protein samples. We expect that the approach will be beneficial, e.g., for fluorescence lifetime or Raman-based imaging and spectroscopy of various samples, including single quantum emitters.


Assuntos
Criptocromos/química , Flavina-Adenina Dinucleotídeo/química , Luz , Espalhamento de Radiação , Aves Canoras , Análise Espectral/métodos , Animais , Interferometria
5.
Nano Lett ; 19(12): 8630-8637, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31698905

RESUMO

There is growing experimental and theoretical evidence that vibronic couplings, couplings between electronic and nuclear degrees of freedom, play a fundamental role in ultrafast excited-state dynamics in organic donor-acceptor hybrids. Whereas vibronic coupling has been shown to support charge separation at donor-acceptor interfaces, so far, little is known about its role in the real-space transport of charges in such systems. Here we theoretically study charge transport in thiophene:fullerene stacks using time-dependent density functional tight-binding theory combined with Ehrenfest molecular dynamics for open systems. Our results reveal coherent oscillations of the charge density between neighboring donor sites, persisting for ∼200 fs and promoting charge transport within the polymer stacks. At the donor-acceptor interface, vibronic wave packets are launched, propagating coherently over distances of more than 3 nm into the acceptor region. This supports previous experimental observations of long-range ballistic charge-carrier motion in organic photovoltaic systems and highlights the importance of vibronic coupling engineering as a concept for tailoring the functionality of hybrid organic devices.

6.
Phys Chem Chem Phys ; 19(29): 18813-18830, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28702561

RESUMO

Light-induced charge transfer from the photoexcited donor to the acceptor is the fundamental step towards current generation in organic solar cells. Experimental evidence for efficient charge separation on ultrafast time scales has been available for quite some time. Yet even today, the elementary mechanisms underlying this process in organic semiconductors and in particular the role of the coherent wave-like motion of electrons and nuclei for the charge separation are still a matter of considerable debate. In this perspective, we present a survey of the current understanding on the role of quantum coherences in organic semiconductors. Specifically, we discuss the role of vibronic couplings for ultrafast charge separation dynamics with particular attention on the potential implications for the light-to-current conversion process in photovoltaic devices.

7.
Nat Commun ; 14(1): 1047, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828818

RESUMO

Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency phonons. As such, prevailing models for the electron-phonon coupling in halide perovskites are insufficient to explain these results. We propose the coupling of characteristic low-frequency phonon fields to intra-excitonic transitions in halide perovskites as the key to control the anharmonic response of these materials in order to establish new routes for enhancing their optoelectronic properties.


Assuntos
Compostos Inorgânicos , Fônons , Compostos de Cálcio , Óxidos
8.
Nat Commun ; 14(1): 8035, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052786

RESUMO

The strong coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials, with potential applications ranging from ultrasensitive all-optical switching to creating polariton condensates. Often, ubiquitous decoherence processes at ambient conditions limit these couplings to such short time scales that the quantum dynamics of the interacting system remains elusive. Prominent examples are strongly coupled exciton-plasmon systems, which, so far, have mostly been investigated by linear optical spectroscopy. Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array. We observe rich coherent Rabi oscillation dynamics reflecting a plasmon-driven coherent exciton population transfer over mesoscopic distances at room temperature. This opens up new opportunities to manipulate the coherent transport of matter excitations by coupling to vacuum fields.

9.
ACS Nano ; 16(3): 4693-4704, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35188735

RESUMO

Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.

10.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34144986

RESUMO

Using an innovative quantum mechanical method for an open quantum system, we observe in real time and space the generation, migration, and dissociation of electron-hole pairs, transport of electrons and holes, and current emergence in an organic photovoltaic cell. Ehrenfest dynamics is used to study photoexcitation of thiophene:fullerene stacks coupled with a time-dependent density functional tight-binding method. Our results display the generation of an electron-hole pair in the donor and its subsequent migration to the donor-acceptor interface. At the interface, electrons transfer from the lowest unoccupied molecular orbitals (LUMOs) of thiophenes to the second LUMOs of fullerene. Further migration of electrons and holes leads to the emergence of current. These findings support previous experimental evidence of coherent couplings between electronic and vibrational degrees of freedom and are expected to stimulate further work toward exploring the interplay between electron-hole pair (exciton) binding and vibronic coupling for charge separation and transport.

11.
Nat Nanotechnol ; 16(1): 63-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199882

RESUMO

Conical intersections (CoIns) of multidimensional potential energy surfaces are ubiquitous in nature and control pathways and yields of many photo-initiated intramolecular processes. Such topologies can be potentially involved in the energy transport in aggregated molecules or polymers but are yet to be uncovered. Here, using ultrafast two-dimensional electronic spectroscopy (2DES), we reveal the existence of intermolecular CoIns in molecular aggregates relevant for photovoltaics. Ultrafast, sub-10-fs 2DES tracks the coherent motion of a vibrational wave packet on an optically bright state and its abrupt transition into a dark state via a CoIn after only 40 fs. Non-adiabatic dynamics simulations identify an intermolecular CoIn as the source of these unusual dynamics. Our results indicate that intermolecular CoIns may effectively steer energy pathways in functional nanostructures for optoelectronics.

12.
J Phys Chem Lett ; 10(18): 5414-5421, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31449755

RESUMO

Halide perovskites are promising optoelectronic materials. Despite impressive device performance, especially in photovoltaics, the femtosecond dynamics of elementary optical excitations and their interactions are still debated. Here we combine ultrafast two-dimensional electronic spectroscopy (2DES) and semiconductor Bloch equations (SBEs) to probe the room-temperature dynamics of nonequilibrium excitations in CsPbBr3 crystals. Experimentally, we distinguish between excitonic and free-carrier transitions, extracting a ∼30 meV exciton binding energy, in agreement with our SBE calculations and with recent experimental studies. The 2DES dynamics indicate remarkably short, <30 fs carrier relaxation at a ∼3 meV/fs rate, much faster than previously anticipated for this material, but similar to that in direct band gap semiconductors such as GaAs. Dynamic screening of excitons by free carriers also develops on a similarly fast <30 fs time scale, emphasizing the role of carrier-carrier interactions for this material's optical properties. Our results suggest that strong electron-phonon couplings lead to ultrafast relaxation of charge carriers, which, in turn may limit halide perovskites' carrier mobilities.

13.
Nat Commun ; 7: 13742, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929115

RESUMO

The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.

14.
Science ; 344(6187): 1001-5, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24876491

RESUMO

Blends of conjugated polymers and fullerene derivatives are prototype systems for organic photovoltaic devices. The primary charge-generation mechanism involves a light-induced ultrafast electron transfer from the light-absorbing and electron-donating polymer to the fullerene electron acceptor. Here, we elucidate the initial quantum dynamics of this process. Experimentally, we observed coherent vibrational motion of the fullerene moiety after impulsive optical excitation of the polymer donor. Comparison with first-principle theoretical simulations evidences coherent electron transfer between donor and acceptor and oscillations of the transferred charge with a 25-femtosecond period matching that of the observed vibrational modes. Our results show that coherent vibronic coupling between electronic and nuclear degrees of freedom is of key importance in triggering charge delocalization and transfer in a noncovalently bound reference system.

15.
ACS Nano ; 8(1): 1056-64, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24377290

RESUMO

We report on the interplay between strong coupling and radiative damping of strongly coupled excitons (Xs) and surface plasmon polaritons (SPPs) in a hybrid system made of J-aggregates and metal nanostructures. The optical response of the system is probed at the field level by angle-resolved spectral interferometry. We show that two different energy transfer channels coexist: coherent resonant dipole-dipole interaction and an incoherent exchange due to the spontaneous emissions of a photon by one emitter and its subsequent reabsorption by another. The interplay between both pathways results in a pronounced modification of the radiative damping due to the formation of super- and subradiant polariton states. This is confirmed by probing the ultrafast nonlinear response of the polariton system and explained within a coupled oscillator model. Such a strong modification of the radiative damping opens up interesting directions in coherent active plasmonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA