Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Glia ; 65(12): 2087-2098, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28940645

RESUMO

The regeneration of oligodendrocytes is a crucial step in recovery from demyelination, as surviving oligodendrocytes exhibit limited structural plasticity and rarely form additional myelin sheaths. New oligodendrocytes arise through the differentiation of platelet-derived growth factor receptor α (PDGFRα) expressing oligodendrocyte progenitor cells (OPCs) that are widely distributed throughout the CNS. Although there has been detailed investigation of the behavior of these progenitors in white matter, recent studies suggest that disease burden in multiple sclerosis (MS) is more strongly correlated with gray matter atrophy. The timing and efficiency of remyelination in gray matter is distinct from white matter, but the dynamics of OPCs that contribute to these differences have not been defined. Here, we used in vivo genetic fate tracing to determine the behavior of OPCs in gray and white matter regions in response to cuprizone-induced demyelination. Our studies indicate that the temporal dynamics of OPC differentiation varies significantly between white and gray matter. While OPCs rapidly repopulate the corpus callosum and mature into CC1 expressing mature oligodendrocytes, OPC differentiation in the cingulate cortex and hippocampus occurs much more slowly, resulting in a delay in remyelination relative to the corpus callosum. The protracted maturation of OPCs in gray matter may contribute to greater axonal pathology and disease burden in MS.


Assuntos
Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Inibidores da Monoaminoxidase/toxicidade , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fatores Etários , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Remielinização/efeitos dos fármacos , Remielinização/fisiologia
2.
J Neurosci ; 35(22): 8626-39, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26041928

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of the CNS characterized by inflammation and neurodegeneration. Animal models that enable the study of remyelination in the context of ongoing inflammation are greatly needed for the development of novel therapies that target the pathological inhibitory cues inherent to the MS plaque microenvironment. We report the development of an innovative animal model combining cuprizone-mediated demyelination with transfer of myelin-reactive CD4(+) T cells. Characterization of this model reveals both Th1 and Th17 CD4(+) T cells infiltrate the CNS of cuprizone-fed mice, with infiltration of Th17 cells being more efficient. Infiltration correlates with impaired spontaneous remyelination as evidenced by myelin protein expression, immunostaining, and ultrastructural analysis. Electron microscopic analysis further reveals that demyelinated axons are preserved but reduced in caliber. Examination of the immune response contributing to impaired remyelination highlights a role for peripheral monocytes with an M1 phenotype. This study demonstrates the development of a novel animal model that recapitulates elements of the microenvironment of the MS plaque and reveals an important role for T cells and peripheral monocytes in impairing endogenous remyelination in vivo. This model could be useful for testing putative MS therapies designed to enhance remyelination in the setting of active inflammation, and may also facilitate modeling the pathophysiology of denuded axons, which has been a challenge in rodents because they typically remyelinate very quickly.


Assuntos
Sistema Nervoso Central/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/terapia , Inibidores da Monoaminoxidase/toxicidade , Bainha de Mielina/metabolismo , Células Th17/fisiologia , Transferência Adotiva , Animais , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Sistema Nervoso Central/ultraestrutura , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Interleucina-17/metabolismo , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/patologia , Monócitos/ultraestrutura , Proteínas da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidade , Infiltração de Neutrófilos , Fragmentos de Peptídeos/toxicidade , Regeneração/efeitos dos fármacos , Células Th17/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA