Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186619

RESUMO

Silicone-in-water emulsions have found widespread use as lubricants, water repellants, softeners, binders, antiblocking agents, antislip agents, and defoamers across a diverse range of markets including textiles, coatings, pharmaceuticals, and home and personal care. Stable incorporation of silicone emulsions into formulated products for these applications can be a challenge. This study seeks to enable formulation by investigating the impact of the degree of ethoxylation of sodium lauryl ether sulfate (SLES) surfactants on their ability to displace surfactant stabilizer at the silicone-water interfaces of polydimethylsiloxane (PDMS)-in-water emulsion droplets. Building this understanding will greatly enable the manufacture of home and personal care products prepared by introducing silicone emulsions into SLES-rich formulations. Nuclear magnetic resonance (NMR) measurements reveal that SLES can displace the triethanolamine dodecylbenzenesulfonate stabilizer at the droplet surfaces. Both capillary electrophoresis (CE) measurements and molecular dynamics simulations of the interfacial tension (IFT) between silicone and water measurements suggest that SLES mixtures with a higher average degree of ethoxylation are more surface active at the silicone─water interface. The molecular dynamics simulations predict a systematic decrease in PDMS-water IFT with increase in degree of ethoxylation (simulations predict a decrease of 1.3 mN/m per mole of ethylene oxide). Optical microscopy reveals that the presence of SLES at the droplet surfaces promotes the formation of loose flocs of droplets that break up upon dilution. Overall, these fundamental insights will aid in formulating silicone emulsions into products to achieve optimal performance.

2.
Magn Reson Chem ; 61(9-10): 544-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551084

RESUMO

13 C nuclear magnetic resonance (NMR) is traditionally considered an insensitive technique, requiring long acquisition times to measure dilute functionalities on large polymers. With the introduction of cryoprobes and better electronics, sensitivity has improved in a way that allows measurements to take less than 1/20th the time that they previously did. Unfortunately, a high Q-factor with cryoprobes creates baseline curvature related to acoustic ringing that affects quantitative NMR analyses. Manual baseline correction is commonly used to compensate for the baseline roll, but it is a time-intensive process. The outcome of manual baseline correction can vary depending on processing parameters, especially for complicated spectra. Additionally, it can be challenging to distinguish between broad peaks and baseline rolls. A new anti-ring pulse sequence (zgig_pisp) was previously reported to improve on the incumbent single pulse experiment (zgig). The original report presented limited comparison data with 13 C NMR, but a thorough validation is needed before broader implementation can be considered. In this work, we report the round-robin testing and comparison of zgig_pisp and zgig pulse sequences. During the testing phase, we found that zgig_pisp is practically equivalent to zgig to ±2% for the majority of integrals examined. Additionally, a short broadband inversion pulse (BIP) was demonstrated as an alternative to the originally reported adiabatic CHIRP shaped pulse. The zgig_pisp pulse sequence code for Bruker spectrometers is also simplified.

3.
ACS Macro Lett ; 10(5): 591-597, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35570773

RESUMO

We report an approach to waterborne and degradable latex polymers. Emulsion polymerization of vinyl acetate (VA) with the cyclic ketene acetal 2-methylene-1,3-dioxepane (MDO) yields polymer particles and latex-based coatings that are hydrolytically degradable due to the presence of backbone ester groups. Polymerization under mildly basic conditions (pH 8) and at low temperature (40 °C) is critical: if the in-process pH is too acidic or the temperature too high, MDO is lost to hydrolysis, but when the media is too alkaline, VA monomer rapidly hydrolyzes. When coated onto commercial paper, films of these degradable particle dispersions show excellent oil and grease resistance as compared to non-degradable, VA-only compositions. This new class of latex is therefore well-suited for the design of next-generation, biodegradable and compostable single-use food service products, as well as for other applications where the erosion or degradation of polymer-based films and coatings is required.


Assuntos
Látex , Papel , Compostos de Vinila , Polimerização , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA