Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 33(17-18): 2796-803, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20658488

RESUMO

Molecularly imprinted polymer (MIP) submicron particles were synthesized, using either ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate as a cross-linker, specifically for recognition of 17ß-estradiol (E2). HPLC with fluorescence detection (HPLC-FD) results showed that 90(±5)% of E2 bound onto these particles after 2 min of incubation, and 96(±3)% after long equilibrium. The binding capacity was 8(±3) µmol/g for MIP particles prepared using ethylene glycol dimethacrylate, and 33-43(±8) µmol/g for using trimethylolpropane trimethacrylate. CE separation of MIP and non-imprinted polymer particles was successful when 50 mM borate buffer (pH 8.5) containing 0.005% w/v EOTrol™ LN in reverse polarity (-30 kV) was used. The electrophoretic mobilities of MIP and non-imprinted polymer particles, together with dynamic light scattering measurement of particle sizes, allowed for an estimation of their surface charges. Automated injection of E2 and particles in mixture set a lower limit of 20(±1) s on incubation time for the study of fast binding kinetics. The presence of E2 and bisphenol A (BPA) together tested the selectivity of MIP particles, when the two compounds competed for available binding cavities or sites. Addition of E2 after BPA confirmed E2 occupation of the specific binding cavities, via displacement of BPA.


Assuntos
Eletroforese Capilar/métodos , Estradiol/química , Impressão Molecular , Polímeros/química , Animais , Compostos Benzidrílicos , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese Capilar/instrumentação , Estrogênios não Esteroides/química , Humanos , Fenóis/química
2.
J Hazard Mater ; 194: 331-7, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-21871719

RESUMO

The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 µg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.


Assuntos
Césio/química , Materiais de Construção , Água/química , Adsorção , Cinética , Espectrometria de Massas , Controle de Qualidade , Soluções , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA