RESUMO
The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.
Assuntos
Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes , Epitopos/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , HIV-1 , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/química , Modelos Moleculares , Mutagênese , Conformação Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/químicaRESUMO
Protein minimization is an attractive approach for designing vaccines against rapidly evolving pathogens such as human immunodeficiency virus, type 1 (HIV-1), because it can help in focusing the immune response toward conserved conformational epitopes present on complex targets. The outer domain (OD) of HIV-1 gp120 contains epitopes for a large number of neutralizing antibodies and therefore is a primary target for structure-based vaccine design. We have previously designed a bacterially expressed outer-domain immunogen (ODEC) that bound CD4-binding site (CD4bs) ligands with 3-12 µm affinity and elicited a modest neutralizing antibody response in rabbits. In this study, we have optimized ODEC using consensus sequence design, cyclic permutation, and structure-guided mutations to generate a number of variants with improved yields, biophysical properties, stabilities, and affinities (KD of 10-50 nm) for various CD4bs targeting broadly neutralizing antibodies, including the germline-reverted version of the broadly neutralizing antibody VRC01. In contrast to ODEC, the optimized immunogens elicited high anti-gp120 titers in rabbits as early as 6 weeks post-immunization, before any gp120 boost was given. Following two gp120 boosts, sera collected at week 22 showed cross-clade neutralization of tier 1 HIV-1 viruses. Using a number of different prime/boost combinations, we have identified a cyclically permuted OD fragment as the best priming immunogen, and a trimeric, cyclically permuted gp120 as the most suitable boosting molecule among the tested immunogens. This study also provides insights into some of the biophysical correlates of improved immunogenicity.
Assuntos
Vacinas contra a AIDS/imunologia , Antígenos CD4/imunologia , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/imunologia , HIV-1/química , Vacinas contra a AIDS/química , Vacinas contra a AIDS/uso terapêutico , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Antígenos CD4/química , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/genética , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Ligantes , Ligação Proteica , CoelhosRESUMO
In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were "stress-tested" at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Multimerização Proteica/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/química , Animais , Glutaral/química , Cobaias , HIV-1/química , Humanos , Imunogenicidade da Vacina/imunologia , Estabilidade Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/químicaRESUMO
Elicitation of broadly neutralizing Ab (bNAb) responses to the conserved elements of the HIV-1 envelope glycoproteins (Env), including the primary receptor CD4 binding site (CD4bs), is a major focus of vaccine development yet to be accomplished. However, a large number of CD4bs-directed bNAbs have been isolated from HIV-1-infected individuals. Comparison of the routes of binding used by the CD4bs-directed bNAbs from patients and the vaccine-elicited CD4bs-directed mAbs indicates that the latter fail to neutralize primary virus isolates because they approach the Env spike with a vertical angle and contact the specific surface residues occluded in the native spike, including the bridging sheet on gp120. To preferentially expose the CD4bs and direct the immune response away from the bridging sheet, resulting in an altered angle of approach, we engineered an immunogen consisting of gp120 core in complex with the prototypic CD4-induced Ab, 17b. This mAb directly contacts the bridging sheet but not the CD4bs. The complex was further stabilized by chemical crosslinking to prevent dissociation. Rabbits immunized with the crosslinked complex displayed earlier affinity maturation, achieving tier 1 virus neutralization compared with animals immunized with gp120 core alone. Immunization with the crosslinked complex induced transient Ab responses with binding specificity similar to the CD4bs-directed bNAbs. mAbs derived from complex-immunized rabbits displayed footprints on gp120 more distal from the bridging sheet as compared with previous vaccine-elicited CD4bs Abs, indicating that Env-Ab complexes effectively dampen immune responses to undesired immunodominant bridging sheet determinants.
Assuntos
Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/imunologia , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/biossíntese , Sítios de Ligação , Antígenos CD4/imunologia , Epitopos/imunologia , Glicosilação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunização , Modelos Moleculares , Ligação Proteica , CoelhosRESUMO
Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos CD4/metabolismo , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/imunologia , Polissacarídeos/deficiência , Animais , Sítios de Ligação , Antígenos CD4/genética , Epitopos/química , Feminino , Cobaias , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunização , Polissacarídeos/química , Polissacarídeos/genética , Conformação Proteica , CoelhosRESUMO
b12, one of the few broadly neutralizing antibodies against HIV-1, binds to the CD4 binding site (CD4bs) on the gp120 subunit of HIV-1 Env. Two small fragments of HIV-1 gp120, b121a and b122a, which display about 70% of the b12 epitope and include solubility-enhancing mutations, were designed. Bacterially expressed b121a/b122a were partially folded and could bind b12 but not the CD4bs-directed non-neutralizing antibody b6. Sera from rabbits primed with b121a or b122a protein fragments and boosted with full-length gp120 showed broad neutralizing activity in a TZM-bl assay against a 16-virus panel that included nine Tier 2 and 3 viruses as well as in a five-virus panel previously designed to screen for broad neutralization. Using a mean IC50 cut-off of 50, sera from control rabbits immunized with gp120 alone neutralized only one virus of the 14 non-Tier 1 viruses tested (7%), whereas sera from b121a- and b122a-immunized rabbits neutralized seven (50%) and twelve (86%) viruses, respectively. Serum depletion studies confirmed that neutralization was gp120-directed and that sera from animals immunized with gp120 contained lower amounts of CD4bs-directed antibodies than corresponding sera from animals immunized with b121a/b122a. Competition binding assays with b12 also showed that b121a/2a sera contained significantly higher amounts of antibodies directed toward the CD4 binding site than the gp120 sera. The data demonstrate that it is possible to elicit broadly neutralizing sera against HIV-1 in small animals.
Assuntos
Anticorpos Neutralizantes/química , Proteína gp120 do Envelope de HIV/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Biofísica/métodos , Antígenos CD4/química , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Imunoglobulina G/química , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas/química , Coelhos , Vacinas/químicaRESUMO
Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector.
Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Biologia Computacional , Feminino , Genótipo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/isolamento & purificação , HumanosRESUMO
BACKGROUND: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. METHODS: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. FINDINGS: VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. INTERPRETATION: VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. FUNDING: The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Mesocricetus , SARS-CoV-2 , Vírus da Estomatite Vesicular Indiana/genética , Imunogenicidade da VacinaRESUMO
The broadly neutralizing antibody against HIV-1, b12, binds to the CD4 binding site (CD4bs) on the outer domain (OD) of the gp120 subunit of HIV-1 Env. We have previously reported the design of an E. coli expressed fragment of HIV-1 gp120, b122a, containing about 70% of the b12 epitope with the idea of focusing the immune response to this structure. Since the b122a structure was found to be only partially folded, as assessed by circular dichroism and protease resistance, we attempted to stabilize it by the introduction of additional disulfide bonds. One such mutant, b122a1-b showed increased stability and bound b12 with 30-fold greater affinity as compared to b122a. Various b122a and OD fragment proteins were displayed on the surface of Qß virus-like particles. Sera raised against these particles in six-month long rabbit immunization studies could neutralize Tier1 viruses across different subtypes with the best results observed with b122a1-b displayed particles. Significantly higher amounts of antibodies directed towards the CD4bs were also elicited by particles displaying b122a1-b. This study highlights the ability of fragment immunogens to focus the antibody response to the conserved CD4bs of HIV-1.
Assuntos
Proteína gp120 do Envelope de HIV/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Antígenos CD4/metabolismo , Escherichia coli/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Nanopartículas/química , Estabilidade Proteica , Coelhos , Ressonância de Plasmônio de SuperfícieRESUMO
Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert.
Assuntos
Vírus da Cinomose Canina/fisiologia , Portadores de Fármacos , Expressão Gênica , Produtos do Gene gag/biossíntese , Vetores Genéticos , Instabilidade Genômica , Replicação Viral , Abdome/virologia , Animais , Encéfalo/virologia , Vírus da Cinomose Canina/genética , Furões , Produtos do Gene gag/genética , Tecido Linfoide/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genéticaRESUMO
There has been much critical influenza research conducted in a little-known laboratory animal--the ferret. The authors review some of these findings, discuss the reasons the ferret often becomes a model for influenza infection, and compare the ferret with other animal models.
Assuntos
Furões/virologia , Modelos Animais , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Orthomyxoviridae , Animais , Furões/anatomia & histologia , Furões/fisiologiaRESUMO
The structure of the HIV-1 envelope membrane-proximal external region (MPER) is influenced by its association with the lipid bilayer on the surface of virus particles and infected cells. To develop a replicating vaccine vector displaying MPER sequences in association with membrane, Env epitopes recognized by the broadly neutralizing antibodies 2F5, 4E10, or both were grafted into the membrane-proximal stem region of the vesicular stomatitis virus (VSV) glycoprotein (G). VSV encoding functional G-MPER chimeras based on G from the Indiana or New Jersey serotype propagated efficiently, although grafting of both epitopes (G-2F5-4E10) modestly reduced replication and resulted in the acquisition of one to two adaptive mutations in the grafted MPER sequence. Monoclonal antibodies 2F5 and 4E10 efficiently neutralized VSV G-MPER vectors and bound to virus particles in solution, indicating that the epitopes were accessible in the preattachment form of the G-MPER chimeras. Overall, our results showed that the HIV Env MPER could functionally substitute for the VSV G-stem region implying that both perform similar functions even though they are from unrelated viruses. Furthermore, we found that the MPER sequence grafts induced low but detectable MPER-specific antibody responses in rabbits vaccinated with live VSV, although additional vector and immunogen modifications or use of a heterologous prime-boost vaccination regimen will be required to increase the magnitude of the immune response.
Assuntos
Anticorpos Anti-HIV/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Vesiculovirus/fisiologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Glicoproteínas de Membrana/imunologia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Vesiculovirus/genética , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/imunologia , Proteínas do Envelope Viral/imunologia , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5'terminus of the genome and insertion of EnvG into the natural G position induced a â¼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that â¼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 10(4)-10(5), with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform.
Assuntos
Vetores Genéticos/metabolismo , HIV-1/metabolismo , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Formação de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Feminino , Imunização , Pulmão/imunologia , Contagem de Linfócitos , Camundongos Endogâmicos BALB C , Conformação Proteica , Multimerização Proteica , Baço/imunologia , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Molecular adjuvants are important for augmenting or modulating immune responses induced by DNA vaccination. Promising results have been obtained using IL-12 expression plasmids in a variety of disease models including the SIV model of HIV infection. We used a mouse model to evaluate plasmid IL-12 (pIL-12) in a DNA prime, recombinant adenovirus serotype 5 (rAd5) boost regimen specifically to evaluate the effect of IL-12 expression on cellular and humoral immunity induced against both SIVmac239 Gag and Env antigens. Priming with electroporated (EP) DNA+pIL-12 resulted in a 2-4-fold enhanced frequency of Gag-specific CD4 T cells which was maintained through the end of the study irrespective of the pIL-12 dose, while memory Env-specific CD4+T cells were maintained only at the low dose of pIL-12. There was little positive effect of pIL-12 on the humoral response to Env, and in fact, high dose pIL-12 dramatically reduced SIV Env-specific IgG. Additionally, both doses of pIL-12 diminished the frequency of CD8 T-cells after DNA prime, although a rAd5 boost recovered CD8 responses regardless of the pIL-12 dose. In this prime-boost regimen, we have shown that a high dose pIL-12 can systemically reduce Env-specific humoral responses and CD4T cell frequency, but not Gag-specific CD4+ T cells. These data indicate that it is important to independently characterize individual SIV or HIV antigen immunogenicity in multi-antigenic vaccines as a function of adjuvant dose.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos Virais/imunologia , Interleucina-12/administração & dosagem , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinação/métodos , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/genética , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Eletroporação , Memória Imunológica , Interleucina-12/genética , Camundongos , Camundongos Endogâmicos C57BL , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genéticaRESUMO
We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination.
Assuntos
Vírus da Cinomose Canina/genética , Portadores de Fármacos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos , Proteínas do Envelope Viral/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Furões , Trato Gastrointestinal/virologia , Tecido Linfoide/virologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/genéticaRESUMO
The safety of a propagation-defective Venezuelan equine encephalitis virus (VEEV) replicon particle vaccine was examined in mice. After intracranial inoculation we observed approximately 5% body weight loss, modest inflammatory changes in the brain, genome replication, and foreign gene expression. These changes were transient and significantly less severe than those caused by TC-83, a live-attenuated vaccinal strain of VEEV that has been safely used to immunize military personnel and laboratory workers. Replicon particles injected intramuscularly or intravenously were detected at limited sites 3 days post-administration, and were undetectable by day 22. There was no evidence of dissemination to spinal cord or brain after systemic administration. These results demonstrate that propagation-defective VEEV replicon particles are minimally neurovirulent and lack neuroinvasive potential.
Assuntos
Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/imunologia , Replicon/genética , Proteínas do Envelope Viral/genética , Animais , Peso Corporal , Encéfalo/metabolismo , Encéfalo/virologia , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/prevenção & controle , Injeções Intramusculares , Injeções Intravenosas , Camundongos , RNA Viral/genética , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Medula Espinal/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Replicação Viral/genéticaRESUMO
Widespread use of a live-attenuated influenza vaccine (LAIV) in the United States (licensed as FluMist) raises the possibility that vaccine viruses will contribute gene segments to the type A influenza virus gene pool. Progeny viruses possessing new genotypes might arise from genetic reassortment between circulating wild-type (wt) and vaccine strains, but it will be difficult to predict whether they will be viable or exhibit novel properties. To begin addressing these uncertainties, reverse-genetics was used to generate 34 reassortant viruses derived from wt influenza virus A/Sydney/5/97 and the corresponding live vaccine strain. The reassortants contained different combinations of vaccine and wt PB2, PB1, PA, NP, M, and NS gene segments whereas all strains encoded wt HA and NA glycoproteins. The phenotypes of the reassortant strains were compared to wt and vaccine viruses by evaluating temperature-sensitive (ts) plaque formation and replication attenuation (att) in ferrets following intranasal inoculation. The results demonstrated that the vaccine virus PB1, PB2, and NP gene segments were dominant when introduced into the wt A/Sydney/5/97 genetic background, producing recombinant viruses that expressed the ts and att phenotypes. A dominant attenuated phenotype also was evident when reassortant strains contained the vaccine M or PA gene segments, even though these polypeptides are not temperature-sensitive. Although the vaccine M and NS gene segments typically are not associated with temperature sensitivity, a number of reassortants containing these vaccine gene segments did exhibit a more restricted ts phenotype. Overall, no reassortant strains were more virulent than wt, and in fact, 33 of the 34 recombinant viruses replicated less efficiently in infected ferrets. These results suggest that genetic reassortment between wt and vaccine strains is unlikely to produce viruses having novel properties that differ substantially from either progenitor, and that the likely outcome of reassortment will be attenuated viruses.
Assuntos
Genes Virais , Vírus da Influenza A/genética , Vacinas contra Influenza/biossíntese , Vírus Reordenados/genética , Recombinação Genética , Vacinas Atenuadas/genética , Proteínas Virais/genética , Animais , Furões , Engenharia Genética , Genótipo , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Fenótipo , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/fisiologia , Temperatura , Células Tumorais Cultivadas , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Ensaio de Placa Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação ViralRESUMO
The genetic and phenotypic stability of viruses isolated from young children following intranasal administration of the trivalent live-attenuated influenza virus vaccine (LAIV, marketed in the United States as FluMist) was evaluated by determination of genomic sequence and assessment of the cold-adapted (ca), temperature-sensitive (ts) and attenuated (att) phenotypes. The complete genomic sequence was determined for 56 independent isolates obtained from children following vaccination (21 type A/H1N1, 12 A/H3N2, 1 A/H3N1 and 22 type B viruses), 20% of which had no nucleotide misincorporations compared with administered vaccine. The remaining isolates had from one to seven changes per genome. None of the observed misincorporations resulted in predicted amino acid codon substitutions at sites previously shown to contribute to the ca, ts or att phenotypes, and all vaccine-derived isolates retained ca and ts phenotypes consistent with the observation that none of the vaccine recipients displayed distinctive symptoms. The results indicate that LAIV strains undergo very limited genetic change following replication in vaccine recipients and that those changes did not affect vaccine attenuation.
Assuntos
Adaptação Fisiológica , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Animais , Creches , Pré-Escolar , Temperatura Baixa , Feminino , Furões , Humanos , Imunização , Lactente , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Vírus da Influenza B/crescimento & desenvolvimento , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Masculino , Nasofaringe/microbiologiaRESUMO
Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.
Assuntos
Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Células Th1/imunologia , Vagina/imunologia , Vagina/virologia , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/imunologia , Animais , Formação de Anticorpos/imunologia , Feminino , Vetores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Cobaias , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Camundongos , Modelos Animais , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismoRESUMO
A herpes simplex virus type 2 (HSV-2) UL24 beta-glucuronidase (UL24-betagluc) insertion mutant was derived from HSV-2 strain 186 via standard marker transfer techniques. Cell monolayers infected with UL24-betagluc yielded cytopathic effect with syncytium formation. UL24-betagluc replicated to wild-type viral titers in three different cell lines. UL24-betagluc was not virulent after intravaginal inoculation of BALB/c mice in that all inoculated animals survived doses up to 400 times the 50% lethal dose (LD50) of the parental virus. Furthermore, few UL24-betagluc-inoculated mice developed any vaginal lesions. Intravaginal inoculation of guinea pigs with UL24-betagluc at a dose equivalent to the LD50 of parental virus (approximately 5 x 10(3) PFU) was not lethal (10/10 animals survived). Although genital lesions developed in some UL24-betagluc-inoculated guinea pigs, both the overall number of lesions and the severity of disease were far less than that observed for animals infected with parental strain 186.