Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microbiol Spectr ; 12(3): e0277323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329351

RESUMO

A significant increase of hospital-acquired bacterial infections during the COVID-19 pandemic has become an urgent medical problem. Clostridioides difficile is an urgent antibiotic-resistant bacterial pathogen and a leading causative agent of nosocomial infections. The increasing recurrence of C. difficile infection and antibiotic resistance in C. difficile has led to an unmet need for the discovery of new compounds distinctly different from present antimicrobials, while antimicrobial peptides as promising alternatives to conventional antibiotics have attracted growing interest recently. Protein synthesis is an essential metabolic process in all bacteria and a validated antibiotic target. Initiation factor 1 from C. difficile (Cd-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis. Here, we report the solution nuclear magnetic resonance (NMR) structure of Cd-IF1 which adopts a typical ß-barrel fold and consists of a five-stranded ß-sheet and one short α-helix arranged in the sequential order ß1-ß2-ß3-α1-ß4-ß5. The interaction of Cd-IF1 with the 30S ribosomal subunit was studied by NMR titration for the construction of a structural model of Cd-IF1 binding with the 30S subunit. The short α-helix in IF1 was found to be critical for IF1 ribosomal binding. A peptide derived from this α-helix was tested and displayed a high ability to inhibit the growth of C. difficile and other bacterial strains. These results provide a clue for the rational design of new antimicrobials.IMPORTANCEBacterial infections continue to represent a major worldwide health hazard due to the emergence of drug-resistant strains. Clostridioides difficile is a common nosocomial pathogen and the causative agent in many infections resulting in an increase in morbidity and mortality. Bacterial protein synthesis is an essential metabolic process and an important target for antibiotic development; however, the precise structural mechanism underlying the process in C. difficile remains unknown. This study reports the solution structure of C. difficile translation initiation factor 1 (IF1) and its interaction with the 30S ribosomal subunit. A short α-helix in IF1 structure was identified as critically important for ribosomal binding and function in regulating the translation initiation, which allowed a rational design of a new peptide. The peptide demonstrated a high ability to inhibit bacterial growth with broad-spectrum antibacterial activity. This study provides a new clue for the rational design of new antimicrobials against bacterial infections.


Assuntos
Infecções Bacterianas , Clostridioides difficile , Humanos , Peptídeos Antimicrobianos , Cádmio , Pandemias , Fatores de Iniciação de Peptídeos , Antibacterianos/farmacologia
2.
ACS Infect Dis ; 7(12): 3161-3167, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709785

RESUMO

Bacterial infections continue to represent a major worldwide health hazard following the emergence of drug-resistant pathogenic strains. Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections with increased morbidity and mortality. The increasing antibiotic resistance in P. aeruginosa has led to an unmet need for discovery of new antibiotic candidates. Bacterial protein synthesis is an essential metabolic process and a validated target for antibiotic development; however, the precise structural mechanism in P. aeruginosa remains unknown. In this work, the interaction of P. aeruginosa initiation factor 1 (IF1) with the 30S ribosomal subunit was studied by NMR, which enabled us to construct a structure of IF1-bound 30S complex. A short α-helix in IF1 was found to be critical for IF1 ribosomal binding and function. A peptide derived from this α-helix was tested and displayed a high ability to inhibit bacterial growth. These results provide a clue for rational design of new antimicrobials.


Assuntos
Peptídeos Antimicrobianos , Pseudomonas aeruginosa , Fatores de Iniciação de Peptídeos , Subunidades Ribossômicas , Ribossomos
3.
SLAS Discov ; 25(1): 57-69, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498734

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections and has highly developed systems for acquiring resistance against numerous antibiotics. The gene (lysS) encoding P. aeruginosa lysyl-tRNA synthetase (LysRS) was cloned and overexpressed, and the resulting protein was purified to 98% homogeneity. LysRS was kinetically evaluated, and the Km values for the interaction with lysine, adenosine triphosphate (ATP), and tRNALys were determined to be 45.5, 627, and 3.3 µM, respectively. The kcatobs values were calculated to be 13, 22.8, and 0.35 s-1, resulting in kcatobs/KM values of 0.29, 0.036, and 0.11 s-1µM-1, respectively. Using scintillation proximity assay technology, natural product and synthetic compound libraries were screened to identify inhibitors of function of the enzyme. Three compounds (BM01D09, BT06F11, and BT08F04) were identified with inhibitory activity against LysRS. The IC50 values were 17, 30, and 27 µM for each compound, respectively. The minimum inhibitory concentrations were determined against a panel of clinically important pathogens. All three compounds were observed to inhibit the growth of gram-positive organisms with a bacteriostatic mode of action. However, two compounds (BT06F11 and BT08F04) were bactericidal against cultures of gram-negative bacteria. When tested against human cell cultures, BT06F11 was not toxic at any concentration tested, and BM01D09 was toxic only at elevated levels. However, BT08F04 displayed a CC50 of 61 µg/mL. In studies of the mechanism of inhibition, BM01D09 inhibited LysRS activity by competing with ATP for binding, and BT08F04 was competitive with ATP and uncompetitive with the amino acid. BT06F11 inhibited LysRS activity by a mechanism other than substrate competition.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/química , Pseudomonas aeruginosa/enzimologia , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana/métodos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
4.
SLAS Discov ; 25(9): 1072-1086, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32583746

RESUMO

Pseudomonas aeruginosa is a multidrug-resistant (MDR) pathogen and a causative agent of both nosocomial and community-acquired infections. The genes (tyrS and tyrZ) encoding both forms of P. aeruginosa tyrosyl-tRNA synthetase (TyrRS-S and TyrRS-Z) were cloned and the resulting proteins purified. TyrRS-S and TyrRS-Z were kinetically evaluated and the Km values for interaction with Tyr, ATP, and tRNATyr were 172, 204, and 1.5 µM and 29, 496, and 1.9 µM, respectively. The kcatobs values for interaction with Tyr, ATP, and tRNATyr were calculated to be 3.8, 1.0, and 0.2 s-1 and 3.1, 3.8, and 1.9 s-1, respectively. Using scintillation proximity assay (SPA) technology, a druglike 2000-compound library was screened to identify inhibitors of the enzymes. Four compounds (BCD37H06, BCD38C11, BCD49D09, and BCD54B04) were identified with inhibitory activity against TyrRS-S. BCD38C11 also inhibited TyrRS-Z. The IC50 values for BCD37H06, BCD38C11, BCD49D09, and BCD54B04 against TyrRS-S were 24, 71, 65, and 50 µM, respectively, while the IC50 value for BCD38C11 against TyrRS-Z was 241 µM. Minimum inhibitory concentrations (MICs) were determined against a panel of clinically important pathogens. All four compounds were observed to inhibit the growth of cultures of both Gram-positive and Gram-negative bacteria organisms with a bacteriostatic mode of action. When tested against human cell cultures, none of the compounds were toxic at concentrations up to 400 µg/mL. In mechanism of inhibition studies, BCD38C11 and BCD49D09 selectively inhibited TyrRS activity by competing with ATP for binding. BCD37H06 and BCD54B04 inhibited TyrRS activity by a mechanism other than substrate competition.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/genética , Tirosina-tRNA Ligase/antagonistas & inibidores , Antibacterianos/química , Infecções Comunitárias Adquiridas/genética , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Inibidores Enzimáticos/química , Humanos , Cinética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Tirosina-tRNA Ligase/genética
5.
Protein Sci ; 29(4): 905-918, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31833153

RESUMO

Pseudomonas aeruginosa has a high potential for developing resistance to multiple antibiotics. The gene (glnS) encoding glutaminyl-tRNA synthetase (GlnRS) from P. aeruginosa was cloned and the resulting protein characterized. GlnRS was kinetically evaluated and the KM and kcatobs , governing interactions with tRNA, were 1.0 µM and 0.15 s-1 , respectively. The crystal structure of the α2 form of P. aeruginosa GlnRS was solved to 1.9 Å resolution. The amino acid sequence and structure of P. aeruginosa GlnRS were analyzed and compared to that of GlnRS from Escherichia coli. Amino acids that interact with ATP, glutamine, and tRNA are well conserved and structure overlays indicate that both GlnRS proteins conform to a similar three-dimensional structure. GlnRS was developed into a screening platform using scintillation proximity assay technology and used to screen ~2,000 chemical compounds. Three inhibitory compounds were identified and analyzed for enzymatic inhibition as well as minimum inhibitory concentrations against clinically relevant bacterial strains. Two of the compounds, BM02E04 and BM04H03, were selected for further studies. These compounds displayed broad-spectrum antibacterial activity and exhibited moderate inhibitory activity against mutant efflux deficient strains of P. aeruginosa and E. coli. Growth of wild-type strains was unaffected, indicating that efflux was likely responsible for the lack of sensitivity. The global mode of action was determined using time-kill kinetics. BM04H03 did not inhibit the growth of human cell cultures at any concentration and BM02E04 only inhibit cultures at the highest concentration tested (400 µg/ml). In conclusion, GlnRS from P. aeruginosa is shown to have a structure similar to that of E. coli GlnRS and two natural product compounds were identified as inhibitors of P. aeruginosa GlnRS with the potential for utility as lead candidates in antibacterial drug development in a time of increased antibiotic resistance.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Antibacterianos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Cinética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/enzimologia
6.
Antimicrob Agents Chemother ; 53(1): 86-94, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015366

RESUMO

REP8839 is a selective inhibitor of methionyl-tRNA synthetase (MetRS) with antibacterial activity against a variety of gram-positive organisms. We determined REP8839 potency against Staphylococcus aureus MetRS and assessed its selectivity for bacterial versus human orthologs of MetRS. The inhibition constant (K(i)) of REP8839 was 10 pM for Staphylococcus aureus MetRS. Inhibition of MetRS by REP8839 was competitive with methionine and uncompetitive with ATP. Thus, high physiological ATP levels would actually facilitate optimal binding of the inhibitor. While many gram-positive bacteria, such as Staphylococcus aureus, express exclusively the MetRS1 subtype, many gram-negative bacteria express an alternative homolog called MetRS2. Some gram-positive bacteria, such as Streptococcus pneumoniae and Bacillus anthracis, express both MetRS1 and MetRS2. MetRS2 orthologs were considerably less susceptible to REP8839 inhibition. REP8839 inhibition of human mitochondrial MetRS was 1,000-fold weaker than inhibition of Staphylococcus aureus MetRS; inhibition of human cytoplasmic MetRS was not detectable, corresponding to >1,000,000-fold selectivity for the bacterial target relative to its cytoplasmic counterpart. Mutations in MetRS that confer reduced susceptibility to REP8839 were examined. The mutant MetRS enzymes generally exhibited substantially impaired catalytic activity, particularly in aminoacylation turnover rates. REP8839 K(i) values ranged from 4- to 190,000-fold higher for the mutant enzymes than for wild-type MetRS. These observations provide a potential mechanistic explanation for the reduced growth fitness observed with MetRS mutant strains relative to that with wild-type Staphylococcus aureus.


Assuntos
Diaminas/farmacologia , Metionina tRNA Ligase/antagonistas & inibidores , Metionina tRNA Ligase/genética , Tiofenos/farmacologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Diaminas/química , Humanos , Metionina/metabolismo , Metionina tRNA Ligase/metabolismo , Estrutura Molecular , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Relação Estrutura-Atividade , Tiofenos/química
7.
Bioorg Med Chem Lett ; 19(3): 800-2, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19109016

RESUMO

High throughput screening led to the discovery of a novel series of quinazolin-2-ylamino-quinazolin-4-ols as a new class of DNA polymerase III inhibitors. The inhibition of chromosomal DNA replication results in bacterial cell death. The synthesis, structure-activity relationships and functional activity are described.


Assuntos
Química Farmacêutica/métodos , DNA Polimerase III/antagonistas & inibidores , DNA Polimerase III/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Quinazolinas/química , Morte Celular , DNA/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Biológicos , Modelos Químicos , Estrutura Molecular , Streptococcus pyogenes/enzimologia , Relação Estrutura-Atividade
8.
SLAS Discov ; 23(3): 294-301, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29186665

RESUMO

Pseudomonas aeruginosa, an opportunistic pathogen, is highly susceptible to developing resistance to multiple antibiotics. The gene encoding aspartyl-tRNA synthetase (AspRS) from P. aeruginosa was cloned and the resulting protein characterized. AspRS was kinetically evaluated, and the KM values for aspartic acid, ATP, and tRNA were 170, 495, and 0.5 µM, respectively. AspRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen 1690 chemical compounds, resulting in the identification of two inhibitory compounds, BT02A02 and BT02C05. The minimum inhibitory concentrations (MICs) were determined against nine clinically relevant bacterial strains, including efflux pump mutant and hypersensitive strains of P. aeruginosa. The compounds displayed broad-spectrum antibacterial activity and inhibited growth of the efflux and hypersensitive strains with MICs of 16 µg/mL. Growth of wild-type strains were unaffected, indicating that efflux was likely responsible for this lack of activity. BT02A02 did not inhibit growth of human cell cultures at any concentration. However, BT02C05 did inhibit human cell cultures with a cytotoxicity concentration (CC50) of 61.6 µg/mL. The compounds did not compete with either aspartic acid or ATP for binding AspRS, indicating that the mechanism of action of the compound occurs outside the active site of aminoacylation.


Assuntos
Antibacterianos/farmacologia , Aspartato-tRNA Ligase/genética , Pseudomonas aeruginosa/efeitos dos fármacos , RNA de Transferência de Asparagina/genética , RNA de Transferência/genética , Proteínas de Bactérias/genética , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citotoxinas/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/genética
9.
SLAS Discov ; 23(1): 65-75, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28745975

RESUMO

Pseudomonas aeruginosa histidyl-tRNA synthetase (HisRS) was selected as a target for antibiotic drug development. The HisRS protein was overexpressed in Escherichia coli and kinetically evaluated. The KM values for interaction of HisRS with its three substrates, histidine, ATP, and tRNAHis, were 37.6, 298.5, and 1.5 µM, while the turnover numbers were 8.32, 16.8, and 0.57 s-1, respectively. A robust screening assay was developed, and 800 natural products and 890 synthetic compounds were screened for inhibition of activity. Fifteen compounds with inhibitory activity were identified, and the minimum inhibitory concentration (MIC) was determined for each against a panel of nine pathogenic bacteria. Each compound exhibited broad-spectrum activity. Based on structural similarity and MIC results, four compounds, BT02C02, BT02D04, BT08E04, and BT09C11, were selected for additional analysis. These compounds inhibited the activity of HisRS with IC50 values of 4.4, 9.7, 14.1, and 11.3 µM, respectively. Time-kill studies indicated a bacteriostatic mode of inhibition for each compound. BT02D04 and BT08E04 were noncompetitive with both histidine and ATP, BT02C02 was competitive with histidine but noncompetitive with ATP, and BT09C11 was uncompetitive with histidine and noncompetitive with ATP. These compounds were not observed to be toxic to human cell cultures.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histidina-tRNA Ligase/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/genética
10.
Curr Drug Discov Technol ; 14(3): 156-168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28359232

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen problematic in causing nosocomial infections and is highly susceptible to development of resistance to multiple antibiotics. The gene encoding methionyl-tRNA synthetase (MetRS) from P. aeruginosa was cloned and the resulting protein characterized. METHODS: MetRS was kinetically evaluated and the KM for its three substrates, methionine, ATP and tRNAMet were determined to be 35, 515, and 29 µM, respectively. P. aeruginosaMetRS was used to screen two chemical compound libraries containing 1690 individual compounds. RESULTS: A natural product compound (BM01C11) was identified that inhibited the aminoacylation function. The compound inhibited P. aeruginosa MetRS with an IC50 of 70 µM. The minimum inhibitory concentration (MIC) of BM01C11 was determined against nine clinically relevant bacterial strains, including efflux pump mutants and hypersensitive strains of P. aeruginosa and E. coli. The MIC against the hypersensitive strain of P. aeruginosa was 16 µg/ml. However, the compound was not effective against the wild-type and efflux pump mutant strains, indicating that efflux may not be responsible for the lack of activity against the wild-type strains. When tested in human cell cultures, the cytotoxicity concentration (CC50) was observed to be 30 µg/ml. The compound did not compete with methionine or ATP for binding MetRS, indicating that the mechanism of action of the compound likely occurs outside the active site of aminoacylation. CONCLUSION: An inhibitor of P. aeruginosa MetRS, BM01C11, was identified as a flavonoid compound named isopomiferin. Isopomiferin inhibited the enzymatic activity of MetRS and displayed broad spectrum antibacterial activity. These studies indicate that isopomiferin may be amenable to development as a therapeutic for bacterial infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Isoflavonas/farmacologia , Metionina tRNA Ligase/antagonistas & inibidores , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/isolamento & purificação , Testes de Sensibilidade Microbiana
11.
Antimicrob Agents Chemother ; 49(10): 4253-62, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16189106

RESUMO

Aminoacyl-tRNA synthetases have attracted interest as essential and novel targets involved in bacterial protein synthesis. REP8839 is a potent inhibitor of MetS, the methionyl-tRNA synthetase in Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), and in Streptococcus pyogenes. The biochemical activity of REP8839 was shown by specific inhibition of purified S. aureus MetS (50% inhibitory concentration, <1.9 nM). Target specificity was confirmed by overexpression of the metS gene in S. aureus, resulting in an eightfold increase in the MIC for REP8839. Macromolecular synthesis assays in the presence of REP8839 demonstrated a dose-dependent inhibition of protein synthesis and RNA synthesis in S. pneumoniae R6, but only protein synthesis was affected in an isogenic rel mutant deficient in the stringent response. Strains with reduced susceptibility to REP8839 were generated by selection of strains with spontaneous mutations and through serial passages. Point mutations within the metS gene were mapped, leading to a total of 23 different amino acid substitutions within MetS that were located around the modeled active site. The most frequent MetS mutations were I57N, leading to a shift in the MIC from 0.06 microg/ml to 4 microg/ml, and G54S, resulting in a MIC of 32 microg/ml that was associated with a reduced growth rate. The mutation prevention concentration was 32 microg/ml in four S. aureus strains (methicillin-sensitive S. aureus and MRSA), which is well below the drug concentration of 2% (20,000 microg/ml) in a topical formulation. In conclusion, we demonstrate by biochemical, physiologic, and genetic mode-of-action studies that REP8839 exerts its antibacterial activity through specific inhibition of MetS, a novel target.


Assuntos
Inibidores Enzimáticos/farmacologia , Metionina tRNA Ligase/antagonistas & inibidores , Metionina tRNA Ligase/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/farmacologia , Sítios de Ligação , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Concentração Inibidora 50 , Meticilina/farmacologia , Metionina tRNA Ligase/química , Metionina tRNA Ligase/genética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Biossíntese de Proteínas , Estrutura Quaternária de Proteína , RNA Bacteriano/metabolismo , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética
12.
Genome Res ; 13(5): 954-64, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12695328

RESUMO

Preparation of genomic DNA from clinical samples is a bottleneck in genotyping and DNA sequencing analysis and is frequently limited by the amount of specimen available. We use Multiple Displacement Amplification (MDA) to amplify the whole genome 10,000-fold directly from small amounts of whole blood, dried blood, buccal cells, cultured cells, and buffy coats specimens, generating large amounts of DNA for genetic testing. Genomic DNA was evenly amplified with complete coverage and consistent representation of all genes. All 47 loci analyzed from 44 individuals were represented in the amplified DNA at between 0.5- and 3.0-fold of the copy number in the starting genomic DNA template. A high-fidelity DNA polymerase ensures accurate representation of the DNA sequence. The amplified DNA was indistinguishable from the original genomic DNA template in 5 SNP and 10 microsatellite DNA assays on three different clinical sample types for 20 individuals. Amplification of genomic DNA directly from cells is highly reproducible, eliminates the need for DNA template purification, and allows genetic testing from small clinical samples. The low amplification bias of MDA represents a dramatic technical improvement in the ability to amplify a whole genome compared with older, PCR-based methods.


Assuntos
DNA/genética , Genoma Humano , Técnicas de Amplificação de Ácido Nucleico/métodos , Células Sanguíneas/química , Fracionamento Celular/métodos , Células Cultivadas , Bochecha , Cromossomos Humanos/genética , DNA/sangue , DNA/isolamento & purificação , Marcadores Genéticos/genética , Genótipo , Humanos , Leucócitos/química , Elementos Nucleotídeos Longos e Dispersos/genética , Mucosa Bucal/química , Mucosa Bucal/citologia , Polimorfismo de Fragmento de Restrição , Elementos Nucleotídeos Curtos e Dispersos/genética
13.
Proc Natl Acad Sci U S A ; 99(8): 5261-6, 2002 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11959976

RESUMO

Fundamental to most genetic analysis is availability of genomic DNA of adequate quality and quantity. Because DNA yield from human samples is frequently limiting, much effort has been invested in developing methods for whole genome amplification (WGA) by random or degenerate oligonucleotide-primed PCR. However, existing WGA methods like degenerate oligonucleotide-primed PCR suffer from incomplete coverage and inadequate average DNA size. We describe a method, termed multiple displacement amplification (MDA), which provides a highly uniform representation across the genome. Amplification bias among eight chromosomal loci was less than 3-fold in contrast to 4-6 orders of magnitude for PCR-based WGA methods. Average product length was >10 kb. MDA is an isothermal, strand-displacing amplification yielding about 20-30 microg product from as few as 1-10 copies of human genomic DNA. Amplification can be carried out directly from biological samples including crude whole blood and tissue culture cells. MDA-amplified human DNA is useful for several common methods of genetic analysis, including genotyping of single nucleotide polymorphisms, chromosome painting, Southern blotting and restriction fragment length polymorphism analysis, subcloning, and DNA sequencing. MDA-based WGA is a simple and reliable method that could have significant implications for genetic studies, forensics, diagnostics, and long-term sample storage.


Assuntos
DNA/química , Técnicas Genéticas , Genoma Humano , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Southern Blotting , Genótipo , Humanos , Hibridização de Ácido Nucleico , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA