Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 89(7): 1711-1721, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32271951

RESUMO

Species typically align along a fast-slow life-history continuum, yet it is not clear to what extent oxidative stress physiology can be integrated with this continuum to form a 'pace-of-life syndrome', especially so in invertebrates. This is important, given the assumed role of oxidative stress in mediating life-history trade-offs, and the prediction that species with a faster pace should be more vulnerable to oxidative stress. We tested whether a species' life-history pace, here represented by its growth rate, can predict species-level differentiation in physiology and sensitivity to oxidative stress. Therefore, we exposed four species of Ischnura damselflies that strongly align along a fast-slow life-history continuum to different levels of ultraviolet (UV) radiation. We measured an extended set of physiological traits linked to the pace-of-life: standard metabolic rate, oxidative stress physiology (antioxidant enzymes and oxidative damage) and defence/condition traits (investment in immune function, energy storage and structural defence). Despite strong species differences in growth rate and physiology, growth rate did not predict species-level differentiation in physiology. Hence there was no support for the integration of metabolic rate, oxidative stress physiology or defence/condition traits into a species-level syndrome. Ultraviolet exposure affected nearly all traits: it reduced growth rate and increased metabolic rate, affected all oxidative stress physiology traits and increased the two defence traits (immune function, and melanin content). Nevertheless, the pace-of-life based on growth rate did not predict sensitivity to UV. Instead, the observed pattern of investment in structural UV defence (melanin) might have reduced the need for enzymatic antioxidant defence, this way potentially decoupling the covariation between the life-history pace and oxidative stress physiology. The absence of an integrated axis of life-history and physiological variation indicates no major constraints for the evolution of these traits among the studied damselfly species. Our study highlights that ecological differences between species may decouple covariation between species' life-history pace and their physiology, as well as their sensitivity to environmental stressors.


Assuntos
Odonatos , Oxidantes , Animais , Estresse Oxidativo , Especificidade da Espécie
2.
Environ Sci Technol ; 51(4): 2409-2417, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28146353

RESUMO

As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.


Assuntos
Metamorfose Biológica/efeitos dos fármacos , Odonatos/efeitos dos fármacos , Animais , Aquecimento Global , Larva/efeitos dos fármacos , Metais/farmacologia
3.
J Anim Ecol ; 85(3): 726-38, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26845756

RESUMO

The pace-of-life syndrome (POLS) hypothesis integrates covariation of life-history traits along a fast-slow continuum and covariation of behavioural traits along a proactive-reactive personality continuum. Few studies have investigated these predicted life-history/personality associations among species and between sexes. Furthermore, whether and how contaminants interfere with POLS patterns remains unexplored. We tested for covariation patterns in life history and in behaviour, and for life-history/personality covariation among species, among individuals within species and between sexes. Moreover, we investigated whether pesticide exposure affects covariation between life history and behaviour and whether species and sexes with a faster POLS strategy have a higher sensitivity to pesticides. We reared larvae of four species of Ischnura damselflies in a common garden experiment with an insecticide treatment (chlorpyrifos absent/present) in the final instar. We measured four life-history traits (larval growth rate during the pesticide treatment, larval development time, adult mass and life span) and two behavioural traits (larval feeding activity and boldness, each before and after the pesticide treatment). At the individual level, life-history traits and behavioural traits aligned along a fast-slow and a proactive-reactive continuum, respectively. Species-specific differences in life history, with fast-lived species having a faster larval growth and development, a lower mass at emergence and a shorter life span, suggested that time constraints in the larval stage were predictably driving life-history evolution both in the larval stage and across metamorphosis in the adult stage. Across species, females were consistently more slow-lived than males, reflecting that a large body size and a long life span are generally more important for females. In contrast to the POLS hypothesis, there was only little evidence for the expected positive coupling between life-history pace and proactivity. Pesticide exposure decreased larval growth rate and affected life-history/personality covariation in the most fast-lived species. Our study supports the existence of life-history and behavioural continua with limited support for life-history/personality covariation. Variation in digestive physiology may explain this decoupling of life history and behaviour and provide valuable mechanistic insights to understand and predict the occurrence of life-history/personality covariation patterns.


Assuntos
Comportamento Animal/efeitos dos fármacos , Tamanho Corporal , Estágios do Ciclo de Vida/fisiologia , Odonatos/fisiologia , Personalidade , Animais , Clorpirifos/efeitos adversos , Feminino , Inseticidas/efeitos adversos , Larva/fisiologia , Masculino , Metamorfose Biológica , Odonatos/crescimento & desenvolvimento , Especificidade da Espécie
4.
Aquat Toxicol ; 163: 81-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25863029

RESUMO

The degree of urbanisation is rapidly increasing worldwide. Due to anthropogenic impact, urban populations are exposed to higher levels of contaminants and higher temperatures. Despite this, urbanisation is a largely overlooked spatial component in ecotoxicology. We tested in a common garden rearing experiment whether replicated urban and rural populations of the damselfly Coenagrion puella differ in their vulnerability to sublethal levels of a widespread pesticide, chlorpyrifos, in terms of ecologically relevant behaviours (exploration behaviour, activity, boldness and food intake), and to what extent these patterns are affected by temperature (20 and 24°C). Except boldness, all behaviours were affected by previous pesticide exposure. While the pesticide did not affect exploration behaviour at 20°C, it was associated with increased exploration at 24°C, which may reflect an increased toxicity of chlorpyrifos at higher temperatures. Importantly, rural and urban larvae showed consistently different, sometimes even opposite behavioural responses to pesticide exposure. When exposed to the pesticide, rural larvae decreased activity and food intake at both temperatures; urban larvae instead increased activity at both temperatures and only reduced food intake at the high temperature. This suggests that urban larvae were less affected by the pesticide, which would be consistent with a scenario of local adaptation to higher contaminant levels. Our results highlight that urbanisation may be an important factor to arrive at a spatially explicit ecological risk assessment, and may be an ignored reason why studies on the same species may generate widely different vulnerabilities to pesticides.


Assuntos
Comportamento Animal/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Clorpirifos/toxicidade , Ingestão de Alimentos/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Odonatos/crescimento & desenvolvimento , Odonatos/fisiologia , Temperatura , Urbanização
5.
Evol Appl ; 7(3): 421-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24665344

RESUMO

The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

6.
Aquat Toxicol ; 152: 215-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792152

RESUMO

Recent insights indicate that negative effects of pesticides on aquatic biota occur at concentrations that current legislation considers environmentally protective. We here address two, potentially interacting, mechanisms that may contribute to the underestimation of the impact of sublethal pesticide effects in single species tests at room temperature: the impairment of predator and antipredator behaviours and the stronger impact of organophosphate pesticides at higher temperatures. To address these issues we assessed the effects of chlorpyrifos on the predator and antipredator behaviours of larvae of the damselfly Ischnura elegans, important intermediate predators in aquatic food webs, in a common-garden warming experiment with replicated low- and high-latitude populations along the latitudinal gradient of this species in Europe. Chlorpyrifos reduced the levels of predator behavioural endpoints, and this reduction was stronger at the higher temperature for head orientations and feeding strikes. Chlorpyrifos also impaired two key antipredator behavioural endpoints, activity reductions in response to predator cues were smaller in the presence of chlorpyrifos, and chlorpyrifos caused a lower escape swimming speed; these effects were independent of temperature. This suggests chlorpyrifos may impact food web interactions by changing predator-prey interactions both with higher (predators) and lower trophic levels (food). Given that only the interaction with the lower trophic level was more impaired at higher temperatures, the overall pesticide-induced changes in food web dynamics may be strongly temperature-dependent. These findings were consistent in damselflies from low- and high-latitude populations, illustrating that thermal adaptation will not mitigate the increased toxicity of pesticides at higher temperatures. Our study not only underscores the relevance of including temperature and prey-predator interactions in ecological risk assessment but also their potential interplay and thereby highlights the complexity of contaminant effects on predator-prey interactions being differentially temperature-dependent pending on the trophic level.


Assuntos
Clorpirifos/toxicidade , Odonatos/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Temperatura , Poluentes Químicos da Água/toxicidade , Animais , Reação de Fuga/efeitos dos fármacos , Larva/efeitos dos fármacos
7.
Glob Chang Biol ; 19(9): 2625-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23640735

RESUMO

Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients.


Assuntos
Adaptação Fisiológica , Aquecimento Global , Larva/efeitos dos fármacos , Metais/farmacologia , Odonatos/crescimento & desenvolvimento , Animais , Odonatos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA