Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105266, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734555

RESUMO

With antimicrobial resistance (AMR) remaining a persistent and growing threat to human health worldwide, membrane-active peptides are gaining traction as an alternative strategy to overcome the issue. Membrane-embedded multi-drug resistant (MDR) efflux pumps are a prime target for membrane-active peptides, as they are a well-established contributor to clinically relevant AMR infections. Here, we describe a series of transmembrane peptides (TMs) to target the oligomerization motif of the AcrB component of the AcrAB-TolC MDR efflux pump from Escherichia coli. These peptides contain an N-terminal acetyl-A-(Sar)3 (sarcosine; N-methylglycine) tag and a C-terminal lysine tag-a design strategy our lab has utilized to improve the solubility and specificity of targeting for TMs previously. While these peptides have proven useful in preventing AcrB-mediated substrate efflux, the mechanisms by which these peptides associate with and penetrate the bacterial membrane remained unknown. In this study, we have shown peptide hydrophobic moment (µH)-the measure of concentrated hydrophobicity on one face of a lipopathic α-helix-drives bacterial membrane permeabilization and depolarization, likely through lateral-phase separation of negatively-charged POPG lipids and the disruption of lipid packing. Our results show peptide µH is an important consideration when designing membrane-active peptides and may be the determining factor in whether a TM will function in a permeabilizing or non-permeabilizing manner when embedded in the bacterial membrane.


Assuntos
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Antibacterianos/química , Escherichia coli/metabolismo , Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
2.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396846

RESUMO

Vacuolar ATPases (V-ATPases), proton pumps composed of 16 subunits, are necessary for a variety of cellular functions. Subunit "a" has four isoforms, a1-a4, each with a distinct cellular location. We identified a phosphoinositide (PIP) interaction motif, KXnK(R)IK(R), conserved in all four isoforms, and hypothesize that a/PIP interactions regulate V-ATPase recruitment/retention to different organelles. Among the four isoforms, a2 is enriched on Golgi with a2 mutations in the PIP motif resulting in cutis laxa. We hypothesize that the hydrophilic N-terminal (NT) domain of a2 contains a lipid-binding domain, and mutations in this domain prevent interaction with Golgi-enriched PIPs, resulting in cutis laxa. We recreated the cutis laxa-causing mutation K237_V238del, and a double mutation in the PIP-binding motif, K237A/V238A. Circular dichroism confirmed that there were no protein structure alterations. Pull-down assays with PIP-enriched liposomes revealed that wildtype a2NT preferentially binds phosphatidylinositol 4-phosphate (PI(4)P), while mutants decreased binding to PI(4)P. In HEK293 cells, wildtype a2NT was localized to Golgi and co-purified with microsomal membranes. Mutants reduced Golgi localization and membrane association. Rapamycin depletion of PI(4)P diminished a2NT-Golgi localization. We conclude that a2NT is sufficient for Golgi retention, suggesting the lipid-binding motif is involved in V-ATPase targeting and/or retention. Mutational analyses suggest a molecular mechanism underlying how a2 mutations result in cutis laxa.


Assuntos
Cútis Laxa , ATPases Vacuolares Próton-Translocadoras , Humanos , Cútis Laxa/genética , Cútis Laxa/metabolismo , Células HEK293 , Isoformas de Proteínas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Mutação
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902293

RESUMO

Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Células HEK293 , ATPases Vacuolares Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Sítios de Ligação , Mamíferos/metabolismo
4.
Biophys J ; 121(17): 3253-3262, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35923102

RESUMO

As the bacterial multidrug resistance crisis continues, membrane-active antimicrobial peptides are being explored as an alternate treatment to conventional antibiotics. In contrast to antimicrobial peptides, which function by a nonspecific membrane disruption mechanism, here we describe a series of transmembrane (TM) peptides that are designed to act as drug efflux inhibitors by aligning with and out-competing a conserved TM4-TM4 homodimerization motif within bacterial small multidrug resistance proteins. The peptides contain two terminal tags: a C-terminal lysine tag to direct the peptides toward the negatively charged bacterial membrane, and an uncharged N-terminal sarcosine (N-methyl-glycine) tag to promote membrane insertion. While effective at inhibiting efflux activity, ostensibly through their designed mechanism of action, the impact of the peptides on the bacterial inner membrane remains undetermined. To evaluate the extant peptide-membrane interactions, we performed a series of biophysical measurements. Circular dichroism spectroscopy and Trp fluorescence showed that the peptides insert into the membrane generally in helical form. Interestingly, differential scanning calorimetry of the peptides added to bacterial-like membranes (POPE:POPG 3:1) revealed the peptides' ability to demix the POPE and POPG lipids, creating two pools, one of which is likely a peptide-POPG conglomerate, and the other a POPE-rich component where the native POPG content has been depleted. However, dye leakage assays confirmed that these events occur without causing significant membrane disruption both in vitro and in vivo, indicating that the peptides can target the small multidrug resistance TM4-TM4 motif without nonspecific membrane disruption. In related studies, DiOC2(3) fluorescence indicated moderate peptide-mediated reduction of the proton motive force for all peptides, including control peptides that did not display inhibitory activity. The overall findings suggest that peptides designed with suitable tags, sequence hydrophobicity, and charge distribution can be directed more generally to impact proteins whose function involves membrane-embedded protein-protein interactions.


Assuntos
Bactérias , Peptídeos , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Celular/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/farmacologia
5.
Biochem Biophys Res Commun ; 612: 105-109, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512459

RESUMO

While cationic antimicrobial peptides (CAPs) are compelling candidates for antimicrobial therapy, their clinical development is largely hampered by their rapid and non-specific enzymatic degradation in physiological fluids. We have earlier de novo designed and synthesized a novel category of CAPs typified by the sequence KKKKKK-AAFAAWAAFAA-NH2 (termed "6K-F17") that have remarkable membrane-penetrating power, are highly selective for bacterial rather than host membranes, and are non-cytotoxic. Here we pursue the design and validation of the Lys chain-shortened 6K-F17 analogs 6Dap-F17 (Dap = diaminopropionic acid), 6Dab-F17 (Dab = diaminobutyric acid), and 6Orn-F17 (Orn = ornithine). Intriguingly, although initially designed to specifically resist trypsin vs. their original Lys sites, all three derivatives of 6K-F17 showed markedly improved stability not only against trypsin, but also against the major proteolytic enzymes elastase and proteinase K at a 1:100 enzyme-to-peptide (E:P) ratio. When the least stable analog, 6Dap-F17, was then cyclized ('stapled') - with reduced main chain hydrophobicity to avoid erythrocyte hemolysis - the peptide became robust towards all three enzymes up to 60 min at a 1:100 E:P ratio, and retained strong presence even at an enhanced 1:1 E:P ratio, as determined by HPLC and mass spectrometry. These results suggest that the application of Lys chain-shortening, either alone or in combination with macrocyclization, may enhance metabolic stability of CAPs, and thus their clinical potential.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Lisina , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Ciclização , Lisina/química , Testes de Sensibilidade Microbiana , Tripsina
6.
Biochemistry ; 60(34): 2586-2592, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34423969

RESUMO

Peptides with a combination of high positive charge and high hydrophobicity have high antimicrobial activity, as epitomized by peptide venoms, which are designed by nature as disruptors of host membranes yet also display significant efficacy against pathogens. To investigate this phenomenon systematically, here we focus on ponericin W1, a peptide venom isolated from Pachycondyla goeldii ants (WLGSALKIGAKLLPSVVGLFKKKKQ) to examine whether Lys positioning can be broadly applied to optimize the functional range of existing natural sequences. We prepared sets of ponericin W1 analogues, where Lys residues were either distributed in an amphipathic manner throughout the sequence (PonAmp), clustered at the N-terminus (PonN), or clustered at the C-terminus (PonC), along with their counterparts of reduced hydrophobicity through 2-4 Leu-to-Ala replacements. We found that wild-type ponericin W1 and all three variants displayed toxicity against human erythrocytes, but hemolysis was eliminated by the replacement of two or more Leu residues by Ala residues. As well, peptides containing up to 3 Leu-to-Ala replacements retained antimicrobial activity against E. coli bacteria. Biophysical analyses of peptide-membrane interaction patterns by circular dichroism spectroscopy revealed a novel mode of cluster-dependent peptide positioning vis-à-vis the water-membrane interface, where PonAmp and PonC peptides displayed full or partial helical structures, while PonN peptides were unstructured, likely due, in part, to dynamic interchange between aqueous and membrane surface environments. The overall findings suggest that the lower membrane penetration of N-terminal charge-clustered constructs coupled with moderate sequence hydrophobicity may be advantageous for conferring enhanced target selectivity for bacterial versus mammalian membranes.


Assuntos
Venenos de Formiga/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Venenos de Formiga/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/metabolismo , Dicroísmo Circular/métodos , Eritrócitos/metabolismo , Escherichia coli/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas
7.
J Biol Chem ; 295(7): 1985-1991, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882543

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel protein that is defective in individuals with cystic fibrosis (CF). To advance the rational design of CF therapies, it is important to elucidate how mutational defects in CFTR lead to its impairment and how pharmacological compounds interact with and alter CFTR. Here, using a helical-hairpin construct derived from CFTR's transmembrane (TM) helices 3 and 4 (TM3/4) and their intervening loop, we investigated the structural effects of a patient-derived CF-phenotypic mutation, E217G, located in the loop region of CFTR's membrane-spanning domain. Employing a single-molecule FRET assay to probe the folding status of reconstituted hairpins in lipid bilayers, we found that the E217G hairpin exhibits an altered adaptive packing behavior stemming from an additional GXXXG helix-helix interaction motif created in the mutant hairpin. This observation suggested that the misfolding and functional defects caused by the E217G mutation arise from an impaired conformational adaptability of TM helical segments in CFTR. The addition of the small-molecule corrector Lumacaftor exerts a helix stabilization effect not only on the E217G mutant hairpin, but also on WT TM3/4 and other mutations in the hairpin. This finding suggests a general mode of action for Lumacaftor through which this corrector efficiently improves maturation of various CFTR mutants.


Assuntos
Aminofenóis/química , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/genética , Sequência de Aminoácidos/genética , Aminofenóis/farmacologia , Aminopiridinas/química , Benzodioxóis/química , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/ultraestrutura , Humanos , Conformação Molecular/efeitos dos fármacos , Mutação/genética , Dobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 115(34): E7932-E7941, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082384

RESUMO

Small multidrug resistance (SMR) pumps represent a minimal paradigm of proton-coupled membrane transport in bacteria, yet no high-resolution structure of an SMR protein is available. Here, atomic-resolution structures of the Escherichia coli efflux-multidrug resistance E (EmrE) multidrug transporter in ligand-bound form are refined using microsecond molecular dynamics simulations biased using low-resolution data from X-ray crystallography. The structures are compatible with existing mutagenesis data as well as NMR and biochemical experiments, including pKas of the catalytic glutamate residues and the dissociation constant ([Formula: see text]) of the tetraphenylphosphonium+ cation. The refined structures show the arrangement of residue side chains in the EmrE active site occupied by two different ligands and in the absence of a ligand, illustrating how EmrE can adopt structurally diverse active site configurations. The structures also show a stable, well-packed binding interface between the helices H4 of the two monomers, which is believed to be crucial for EmrE dimerization. Guided by the atomic details of this interface, we design proteolysis-resistant stapled peptides that bind to helix H4 of an EmrE monomer. The peptides are expected to interfere with the dimerization and thereby inhibit drug transport. Optimal positions of the peptide staple were determined using free-energy simulations of peptide binding to monomeric EmrE Three of the four top-scoring peptides selected for experimental testing resulted in significant inhibition of proton-driven ethidium efflux in live cells without nonspecific toxicity. The approach described here is expected to be of general use for the design of peptide therapeutics.


Assuntos
Antiporters , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli , Escherichia coli/química , Simulação de Dinâmica Molecular , Peptídeos/química , Multimerização Proteica , Antiporters/antagonistas & inibidores , Antiporters/química , Domínio Catalítico , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Estrutura Quaternária de Proteína
9.
Proc Natl Acad Sci U S A ; 115(7): 1505-1510, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378946

RESUMO

Biologics are a rapidly growing class of therapeutics with many advantages over traditional small molecule drugs. A major obstacle to their development is that proteins and peptides are easily destroyed by proteases and, thus, typically have prohibitively short half-lives in human gut, plasma, and cells. One of the most effective ways to prevent degradation is to engineer analogs from dextrorotary (D)-amino acids, with up to 105-fold improvements in potency reported. We here propose a general peptide-engineering platform that overcomes limitations of previous methods. By creating a mirror image of every structure in the Protein Data Bank (PDB), we generate a database of ∼2.8 million D-peptides. To obtain a D-analog of a given peptide, we search the (D)-PDB for similar configurations of its critical-"hotspot"-residues. As a proof of concept, we apply our method to two peptides that are Food and Drug Administration approved as therapeutics for diabetes and osteoporosis, respectively. We obtain D-analogs that activate the GLP1 and PTH1 receptors with the same efficacy as their natural counterparts and show greatly increased half-life.


Assuntos
Aminoácidos/química , Bases de Dados de Proteínas , Peptídeos/química , Engenharia de Proteínas/métodos , Algoritmos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Meia-Vida , Humanos , Hormônio Paratireóideo/agonistas , Hormônio Paratireóideo/química , Hormônio Paratireóideo/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacocinética , Conformação Proteica , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Reprodutibilidade dos Testes
10.
Biochemistry ; 59(41): 3973-3981, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33026802

RESUMO

Clinically relevant multidrug-resistant bacteria often arise due to overproduction of membrane-embedded efflux proteins that are capable of pumping antibiotics out of the bacterial cell before the drugs can exert their intended toxic effect. The Escherichia coli membrane protein AcrB is the archetypal protein utilized for bacterial efflux study because it can extrude a diverse range of antibiotic substrates and has close homologues in many Gram-negative pathogens. Three AcrB subunits, each of which contains 12 transmembrane (TM) helices, are known to trimerize to form the minimal functional unit, stabilized noncovalently by helix-helix interactions between TM1 and TM8. To inhibit the efflux activity of AcrB, we have rationally designed synthetic peptides aimed at destabilizing the AcrB trimerization interface by outcompeting the subunit interaction sites within the membrane. Here we report that peptides mimicking TM1 or TM8, with flanking N-terminal peptoid tags, and C-terminal lysine tags that aid in directing the peptides to their membrane-embedded target, decrease the AcrB-mediated efflux of the fluorescent substrate Nile red and potentiate the effect of the antimicrobials chloramphenicol and ethidium bromide. To further characterize the motif encompassing the interaction between TM1 and TM8, we used Förster resonance energy transfer to demonstrate dimerization. Using the TM1 and TM8 peptides, in conjunction with several selected mutant peptides, we highlight residues that may increase the potency and specificity of the peptide drug candidates. In targeting membrane-embedded protein-protein interactions, this work represents a novel approach to AcrB inhibition and, more broadly, a potential route to a new category of efflux pump inhibitors.


Assuntos
Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sítios de Ligação , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/fisiologia , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica
11.
Artigo em Inglês | MEDLINE | ID: mdl-31209007

RESUMO

Bacteria have acquired multiple mechanisms to evade the lethal effects of current therapeutics, hindering treatment of bacterial infections, such as those caused by the pathogen Pseudomonas aeruginosa, which is responsible for nosocomial and cystic fibrosis lung infections. One resistance mechanism involves membrane-embedded multidrug efflux pumps that can effectively extrude an array of substrates, including common antibiotics, dyes, and biocides. Among these is a small multidrug resistance (SMR) efflux protein, consisting of four transmembrane (TM) helices, that functions as an antiparallel dimer. TM helices 1 to 3 (TM1 to TM3) comprise the substrate binding pocket, while TM4 contains a GG7 heptad sequence motif that mediates the SMR TM4-TM4 dimerization. In the present work, we synthesized a series of peptides containing the residues centered on the TM4-TM4 binding interface found in the P. aeruginosa SMR (PAsmr), typified by Ac-Ala-(Sar)3-LLGIGLIIAGVLV-KKK-NH2 (helix-helix interaction residues are underlined). Here, the acetylated N-terminal sarcosine (N-methyl-Gly) tag [Ac-Ala-(Sar)3] promotes membrane penetration, while the C-terminal Lys tag promotes selectivity for the negatively charged bacterial membranes. This peptide was observed to competitively disrupt PAsmr-mediated efflux, as measured by efflux inhibition of the fluorescent dye ethidium bromide, while having no effect on cell membrane integrity. Alternatively, a corresponding peptide in which the TM4 binding motif is scrambled was inactive in this assay. In addition, when Escherichia coli cells expressing PAsmr were combined with sublethal concentrations of several biocides, growth was significantly inhibited when peptide was added, notably, by up to 95% with the disinfectant benzylalkonium chloride. These results demonstrate promise for an efflux pump inhibitor to address the increasing threat of antibiotic-resistant bacteria.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Ligação Proteica
12.
Biochim Biophys Acta Biomembr ; 1860(5): 1092-1098, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29307731

RESUMO

Missense mutations constitute 40% of 2000 cystic fibrosis-phenotypic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) database, yet the precise mechanism as to how a point mutation can render the entire 1480-residue CFTR protein dysfunctional is not well-understood. Here we investigate the structural effects of two CF-phenotypic mutations - glutamic acid to glycine at position 217 (E217G) and glutamine to arginine at position 220 (Q220R) - in the extracellular (ECL2) loop region of human CFTR using helical hairpin constructs derived from transmembrane (TM) helices 3 and 4 of the first membrane domain. We systematically replaced the wild type (WT) residues E217 and Q220 with the subset of missense mutations that could arise through a single nucleotide change in their respective codons. Circular dichroism spectra of E217G revealed that a significant increase in helicity vs. WT arises in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, while this mutant showed a similar gel shift to WT on SDS-PAGE gels. In contrast, the CF-mutant Q220R showed similar helicity but an increased gel shift vs. WT. These structural variations are compared with the maturation levels of the corresponding mutant full-length CFTRs, which we found are reduced to approx. 50% for E217G and 30% for Q220R vs. WT. The overall results with CFTR hairpins illustrate the range of impacts that single mutations can evoke in intramolecular protein-protein and/or protein-lipid interactions - and the levels to which corresponding mutations in full-length CFTR may be flagged by quality control mechanisms during biosynthesis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Sequência de Aminoácidos , Substituição de Aminoácidos , Espaço Extracelular , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 26(6): 1189-1196, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29275987

RESUMO

Cyclization has been recognized as a valuable technique for increasing the efficacy of small molecule and peptide therapeutics. Here we report the application of a hydrocarbon staple to a rationally-designed cationic antimicrobial peptide (CAP) that acquires increased membrane targeting and interaction vs. its linear counterpart. The previously-described CAP, 6K-F17 (KKKKKK-AAFAAWAAFAA-NH2) was used as the backbone for incorporation of an i to i + 4 helical hydrocarbon staple through olefin ring closing metathesis. Stapled versions of 6K-F17 showed an increase in non-selective membrane interaction, where the staple itself enhances the degree of membrane interaction and rate of cell death while maintaining high potency against bacterial membranes. However, the higher averaged hydrophobicity imparted by the staple also significantly increases toxicity to mammalian cells. This deleterious effect is countered through stepwise reduction of the stapled 6K-F17's backbone hydrophobicity through polar amino acid substitutions. Circular dichroism assessment of secondary structure in various bacterial membrane mimetics reveals that a helical structure may improve - but is not an absolute requirement for - antimicrobial activity of 6K-F17. Further, phosphorus-31 static solid state NMR spectra revealed that both non-toxic stapled and linear peptides bind bacterial membranes in a similar manner that does not involve a detergent-like mechanism of lipid removal. The overall results suggest that the technique of hydrocarbon stapling can be readily applied to membrane-interactive CAPs to modulate how they interact and target biological membranes.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Hidrocarbonetos/química , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
14.
Biochim Biophys Acta Biomembr ; 1859(4): 577-585, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27580024

RESUMO

Membrane proteins play the central roles in a variety of cellular processes, ranging from nutrient uptake and signalling, to cell-cell communication. Their biological functions are directly related to how they fold and assemble; defects often lead to disease. Protein-protein interactions (PPIs) within the membrane are therefore of great interest as therapeutic targets. Here we review the progress in the application of membrane-insertable peptides for the disruption or stabilization of membrane-based PPIs. We describe the design and preparation of transmembrane peptide mimics; and of several categories of peptidomimetics used for study, including d-enantiomers, non-natural amino acids, peptoids, and ß-peptides. Further aspects of the review describe modifications to membrane-insertable peptides, including lipidation and cyclization via hydrocarbon stapling. These approaches provide a pathway toward the development of metabolically stable, non-toxic, and efficacious peptide modulators of membrane-based PPIs. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Peptídeos Cíclicos/química , Peptidomiméticos/química , Peptoides/química , Motivos de Aminoácidos , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Membrana Celular/química , Membrana Celular/metabolismo , Desenho de Fármacos , Humanos , Lipídeos de Membrana/antagonistas & inibidores , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/uso terapêutico , Peptidomiméticos/metabolismo , Peptidomiméticos/uso terapêutico , Peptoides/metabolismo , Peptoides/uso terapêutico , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Estereoisomerismo
15.
Biochemistry ; 55(31): 4306-15, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27434090

RESUMO

Changes in pH can alter the structure and activity of proteins and may be used by the cell to control molecular function. This coupling can also be used in non-native applications through the design of pH-sensitive biomolecules. For example, the pH (low) insertion peptide (pHLIP) can spontaneously insert into a lipid bilayer when the pH decreases. We have previously shown that the α-helicity and helix-helix interactions of the TM2 α-helix of the proteolipid protein (PLP) are sensitive to the local hydrophobicity at its C-terminus. Given that there is an ionizable residue (Glu-88) at the C-terminus of this transmembrane (TM) segment, we hypothesized that changing the ionization state of this residue through pH may alter the local hydrophobicity of the peptide enough to affect both its secondary structure and helix-helix interactions. To examine this phenomenon, we synthesized peptide analogues of the PLP TM2 α-helix (wild-type sequence (66)AFQYVIYGTASFFFLYGALLLAEGF(90)). Using circular dichroism and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate, we found that a decrease in pH increases both peptide α-helicity and the extent of self-association. This pH-dependent effect is due specifically to the presence of Glu-88 at the C-terminus. Additional experiments in which Phe-90 was mutated to residues of varying hydrophobicities indicated that the strength of this effect is dependent on the local hydrophobicity near Glu-88. Our results have implications for the design of TM peptide switches and improve our understanding of how membrane protein structure and activity can be regulated through local molecular environmental changes.


Assuntos
Proteína Proteolipídica de Mielina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Ácido Glutâmico/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteína Proteolipídica de Mielina/síntese química , Proteína Proteolipídica de Mielina/genética , Fenilalanina/química , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas
16.
Biochemistry ; 55(40): 5772-5779, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27620701

RESUMO

Insertion of a nascent membrane protein segment by the translocon channel into the bilayer is naturally promoted by high segmental hydrophobicity, but its selection as a transmembrane (TM) segment is complicated by the diverse environments (aqueous vs lipidic) the protein encounters and by the fact that most TM segments contain a substantial amount (∼30%) of polar residues, as required for protein structural stabilization and/or function. To examine the contributions of these factors systematically, we designed and synthesized a peptide library consisting of pairs of compositionally identical, but sequentially different, peptides with 19-residue core sequences varying (i) in Leu positioning (with five or seven Leu residues clustered into a contiguous "block" in the middle of the segment or "scrambled" throughout the sequence) and (ii) in Ser content (0-6 residues). The library was analyzed by a combination of biophysical and biological techniques, including HPLC retention times, circular dichroism measurements of helicity in micelle and phospholipid bilayer media, and relative blue shifts in Trp fluorescence maxima, as well as by the extent of membrane insertion in a translocon-mediated assay using microsomal membranes from dog pancreas endoplasmic reticulum. We found that local blocks of high hydrophobicity heighten the translocon's propensity to insert moderately hydrophilic sequences, until a "threshold hydrophilicity" is surpassed whereby segments no longer insert even in the presence of Leu blocks. This study codifies the prerequisites of apolar/polar content and residue positioning that define nascent TM segments, illustrates the accuracy in their prediction, and highlights how a single disease-causing mutation can tip the balance toward anomalous translocation/insertion.


Assuntos
Proteínas de Membrana/química , Sequência de Aminoácidos , Aminoácidos/química , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Micelas , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
17.
J Biol Chem ; 290(3): 1752-9, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25425644

RESUMO

Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues (90)GLALIVAGV(98)); and (ii) a peptide comprised of the full TM4(85-105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88-100), and then "staple" this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-(88)VVGLXLIZXGVVV(100)-KKK-NH2 (X = 2-(4'-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn(95) peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88-100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Peptídeos/química , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Etídio/química , Halobacterium/metabolismo , Hemólise , Humanos , Bicamadas Lipídicas/química , Fígado/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína
18.
Biopolymers ; 106(1): 37-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566586

RESUMO

The sodium ion-translocating F0 F1 ATP synthase from the bacterium Ilyobacter tartaricus contains a highly stable rotor ring composed of 11 c subunits. The synthase subunit c-in effect an 89-residue peptide that folds into a helical hairpin consisting of two membrane-spanning helices and a cytoplasmic loop-was probed for the structural impact of a series of substitutions with the ß-turn-inducing proline-glycine couplet scanning the hairpin loop (residues 44-51) of the I. tartaricus sequence. We found that a Pro residue in other than the wild type position 47 alters the gross secondary structure of subunit c from α-helical to ß-sheet-like, as well as changing its oligomeric ring structure, and its stability toward heat and trichloroacetic acid treatment. Such a Pro-mediated structural switch in one of the first membrane proteins in life hints to a potential evolutionary connection between α-helical and ß-sheet membrane proteins.


Assuntos
Proteínas de Membrana/química , Mutação , Prolina/genética , Sequência de Aminoácidos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/genética , Conformação Proteica
19.
Proc Natl Acad Sci U S A ; 110(39): 15668-73, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24019476

RESUMO

SDS/PAGE is universally used in biochemistry, cell biology, and immunology to resolve minute protein amounts readily from tissue and cell extracts. Although molecular weights of water-soluble proteins are reliably determined from their SDS/PAGE mobility, most helical membrane proteins, which comprise 20-30% of the human genome and the majority of drug targets, migrate to positions that have for decades been unpredictably slower or faster than their actual formula weight, often confounding their identification. Using de novo designed transmembrane-mimetic polypeptides that match the composition of helical membrane-spanning sequences, we quantitate anomalous SDS/PAGE fractionation of helical membrane proteins by comparing the relative mobilities of these polypeptides with typical water-soluble reference proteins on Laemmli gels. We find that both the net charge and effective molecular size of the migrating particles of transmembrane-mimetic species exceed those of the corresponding reference proteins and that gel acrylamide concentration dictates the impact of these two factors on the direction and magnitude of anomalous migration. Algorithms we derived from these data compensate for this differential effect of acrylamide concentration on the SDS/PAGE mobility of a variety of natural membrane proteins. Our results provide a unique means to predict anomalous migration of membrane proteins, thereby facilitating straightforward determination of their molecular weights via SDS/PAGE.


Assuntos
Acrilamida/química , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas de Membrana/química , Humanos , Peso Molecular , Estrutura Secundária de Proteína , Padrões de Referência , Eletricidade Estática
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA