Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(12): 3748-3759, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37651619

RESUMO

The ecological mechanism underlying nocturnal stomatal conductance (gsn ) in C3 and C4 plants remains elusive. In this study, we proposed a 'coordinated leaf trait' hypothesis to explain gsn in rice plants. We conducted an open-field experiment by applying drought, nutrient stress and the combined drought-nutrient stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient stress. With the aforementioned multiple abiotic stressors considered as random effects, gsn exhibited a strong positive correlation with dark respiration (Rn ). Notably, gsn primed early morning (5:00-7:00) photosynthesis through faster stomatal response time. This photosynthesis priming effect diminished after mid-morning (9:00). Leaves were cooled by gsn -derived transpiration. However, our results clearly suggest that evaporative cooling did not reduce dark respiration cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that dark respiration can explain considerable variation of gsn .


Assuntos
Oryza , Oryza/fisiologia , Secas , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Respiração , Água/fisiologia , Transpiração Vegetal/fisiologia
2.
Remote Sens Environ ; 231: 111272, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082142

RESUMO

Terrestrial gross primary productivity (GPP) plays an essential role in the global carbon cycle, but the quantification of the spatial and temporal variations in photosynthesis is still largely uncertain. Our work aimed to investigate the potential of remote sensing to provide new insights into plant photosynthesis at a fine spatial resolution. This goal was achieved by exploiting high-resolution images acquired with the FLuorescence EXplorer (FLEX) airborne demonstrator HyPlant. The sensor was flown over a mixed forest, and the images collected were elaborated to obtain two independent indicators of plant photosynthesis. First, maps of sun-induced chlorophyll fluorescence (F), a novel indicator of plant photosynthetic activity, were successfully obtained at both the red and far-red peaks (r2 = 0.89 and p < 0.01, r2 = 0.77 and p < 0.01, respectively, compared to top-of-canopy ground-based measurements acquired synchronously with the overflight) over the forested study area. Second, maps of GPP and absorbed photosynthetically active radiation (APAR) were derived using a customised version of the coupled biophysical model Breathing Earth System Simulator (BESS). The model was driven with airborne-derived maps of key forest traits (i.e., leaf chlorophyll content (LCC) and leaf area index (LAI)) and meteorological data providing a high-resolution snapshot of the variables of interest across the study site. The LCC and LAI were accurately estimated (RMSE = 5.66 µg cm-2 and RMSE = 0.51 m2m-2, respectively) through an optimised Look-Up-Table-based inversion of the PROSPECT-4-INFORM radiative transfer model, ensuring the accurate representation of the spatial variation of these determinants of the ecosystem's functionality. The spatial relationships between the measured F and modelled BESS outputs were then analysed to interpret the variability of ecosystem functioning at a regional scale. The results showed that far-red F is significantly correlated with the GPP (r2 = 0.46, p < 0.001) and APAR (r2 = 0.43, p < 0.001) in the spatial domain and that this relationship is nonlinear. Conversely, no statistically significant relationships were found between the red F and the GPP or APAR (p > 0.05). The spatial relationships found at high resolution provide valuable insight into the critical role of spatial heterogeneity in controlling the relationship between the far-red F and the GPP, indicating the need to consider this heterogeneity at a coarser resolution.

3.
Sensors (Basel) ; 17(8)2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800065

RESUMO

Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.


Assuntos
Imagens de Satélites , Algoritmos , Florestas , Reprodutibilidade dos Testes
4.
Sci Adv ; 9(31): eadi0775, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531429

RESUMO

Emerging new-generation geostationary satellites have broadened the scope for studying the diurnal cycle of ecosystem functions. We exploit observations from the Geostationary Operational Environmental Satellite-R series to examine the effect of a severe U.S. heatwave in 2020 on the diurnal variations of ecosystem photosynthesis. We find divergent responses of photosynthesis to the heatwave across vegetation types and aridity gradients, with drylands exhibiting widespread midday and afternoon depression in photosynthesis. The diurnal centroid and peak time of dryland gross primary production (GPP) substantially shift toward earlier morning times, reflecting notable water and heat stress. Our geostationary satellite-based method outperforms traditional radiation-based upscaling methods from polar-orbiting satellite snapshots in estimating daily GPP and GPP loss during heatwaves. These findings underscore the potential of geostationary satellites for diurnal photosynthesis monitoring and highlight the necessity to consider the increased diurnal asymmetry in GPP under stress when evaluating carbon-climate interactions.


Assuntos
Clorofila , Ecossistema , Clorofila/análise , Depressão , Monitoramento Ambiental/métodos , Ciclo do Carbono , Fluorescência , Fotossíntese , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA