Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Ann Neurol ; 94(6): 1048-1066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605362

RESUMO

OBJECTIVE: Because the role of white matter (WM) degenerating microglia (DM) in remyelination failure is unclear, we sought to define the core features of this novel population of aging human microglia. METHODS: We analyzed postmortem human brain tissue to define a population of DM in aging WM lesions. We used immunofluorescence staining and gene expression analysis to investigate molecular mechanisms related to the degeneration of DM. RESULTS: We found that DM, which accumulated myelin debris were selectively enriched in the iron-binding protein light chain ferritin, and accumulated PLIN2-labeled lipid droplets. DM displayed lipid peroxidation injury and enhanced expression for TOM20, a mitochondrial translocase, and a sensor of oxidative stress. DM also displayed enhanced expression of the DNA fragmentation marker phospho-histone H2A.X. We identified a unique set of ferroptosis-related genes involving iron-mediated lipid dysmetabolism and oxidative stress that were preferentially expressed in WM injury relative to gray matter neurodegeneration. INTERPRETATION: Ferroptosis appears to be a major mechanism of WM injury in Alzheimer's disease and vascular dementia. WM DM are a novel therapeutic target to potentially reduce the impact of WM injury and myelin loss on the progression of cognitive impairment. ANN NEUROL 2023;94:1048-1066.


Assuntos
Ferroptose , Substância Branca , Humanos , Microglia/metabolismo , Substância Branca/patologia , Envelhecimento/patologia , Encéfalo/patologia
2.
BMC Musculoskelet Disord ; 23(1): 296, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35351077

RESUMO

BACKGROUND: It is common practice to use a combination approach of computed tomography (CT) scan followed by upright radiographs when assessing traumatic thoracolumbar (TL) vertebral fractures. The purpose of this study was to determine the clinical utility of upright spine radiographs in the setting of traumatic TL fracture management. Our null hypothesis is that upright TL radiographs rarely change management of acute vertebral fractures. METHODS: A retrospective study was performed on patients with an initial plan of non-operative management for a TL fracture between January 2014 and June 2020 at a single Level 1 trauma center. Patients were followed from time of initial consult to either conversion to surgery (operative) or last available outpatient follow up imaging (non-operative). Lateral kyphotic angle of the fractured vertebra and anterior vertebral body height% loss on initial CT, first upright radiograph, and endpoint upright radiograph imaging were measured. Measurements were compared between and within operative and non-operative groups using t-tests and Mann-Whitney U tests when appropriate. P-values ≤ 0.05 were considered statistically significant. RESULTS: The study included 70 patients with an average age of 54 years and 37 (52.9%) were women. Six (8.6%) of 70 patients had a change from non-operative to operative management based on upright radiographs. The mean (standard deviation) change in degrees of kyphosis from CT scan to first X-ray was 4.6 (7.0) in the non-operative group and 11.5 (8.1) in the operative group (P = 0.03). Delta degrees of kyphosis from CT scan to endpoint X-ray was 6.4 (9.0) and 16.2 (6.2) in the non-operative and operative groups, respectively (P = 0.01). In the operative group, mean degrees of kyphosis increased from 1.6 (7.6) in initial CT to 13.1 (8.9) in first X-ray (P = 0.02). First X-ray mean anterior body height% loss was 37.5 (17.6) and 53.2 (16.1) in the non-operative and operative groups, respectively (P = 0.04). CONCLUSIONS: Upright radiographs are useful in guiding traumatic vertebral fracture management decisions. Larger studies are needed to determine the degree of change in kyphosis between CT and first standing radiograph that is suggestive of operative management. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION: Not applicable.


Assuntos
Fraturas Ósseas , Fraturas da Coluna Vertebral , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/lesões , Vértebras Lombares/cirurgia , Pessoa de Meia-Idade , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgia , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/lesões , Vértebras Torácicas/cirurgia
3.
J Neurosci ; 39(40): 7853-7871, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31455661

RESUMO

Children who survive premature birth often exhibit reductions in hippocampal volumes and deficits in working memory. However, it is unclear whether synaptic plasticity and cellular mechanisms of learning and memory can be elicited or disrupted in the preterm fetal hippocampus. CA1 hippocampal neurons were exposed to two common insults to preterm brain: transient hypoxia-ischemia (HI) and hypoxia (Hx). We used a preterm fetal sheep model using both sexes in twin 0.65 gestation fetuses that reproduces the spectrum of injury and abnormal growth in preterm infants. Using Cavalieri measurements, hippocampal volumes were reduced in both Hx and HI fetuses compared with controls. This volume loss was not the result of neuronal cell death. Instead, morphometrics revealed alterations in both basal and apical dendritic arborization that were significantly associated with the level of systemic hypoxemia and metabolic stress regardless of etiology. Anatomical alterations of CA1 neurons were accompanied by reductions in probability of presynaptic glutamate release, long-term synaptic plasticity and intrinsic excitability. The reduction in intrinsic excitability was in part due to increased activity of the channels underlying the fast and slow component of the afterhyperpolarization in Hx and HI. Our studies suggest that even a single brief episode of hypoxemia can markedly disrupt hippocampal maturation. Hypoxemia may contribute to long-term working memory disturbances in preterm survivors by disrupting neuronal maturation with resultant functional disturbances in hippocampal action potential throughput. Strategies directed at limiting the duration or severity of hypoxemia during brain development may mitigate disturbances in hippocampal maturation.SIGNIFICANCE STATEMENT Premature infants commonly sustain hypoxia-ischemia, which results in reduced hippocampal growth and life-long disturbances in learning and memory. We demonstrate that the circuitry related to synaptic plasticity and cellular mechanisms of learning and memory (LTP) are already functional in the fetal hippocampus. Unlike adults, the fetal hippocampus is surprisingly resistant to cell death from hypoxia-ischemia. However, the hippocampus sustains robust structural and functional disturbances in the dendritic maturation of CA1 neurons that are significantly associated with the magnitude of a brief hypoxic stress. Since transient hypoxic episodes occur commonly in preterm survivors, our findings suggest that the learning problems that ensue may be related to the unique susceptibility of the hippocampus to brief episodes of hypoxemia.


Assuntos
Região CA1 Hipocampal/patologia , Hipóxia/patologia , Células Piramidais/patologia , Ovinos/fisiologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Dendritos/patologia , Espinhas Dendríticas/patologia , Feminino , Desenvolvimento Fetal , Masculino , Memória de Longo Prazo , Memória de Curto Prazo , Plasticidade Neuronal , Gravidez , Nascimento Prematuro , Estresse Fisiológico , Transmissão Sináptica
4.
J Neurosci ; 37(49): 11912-11929, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29089437

RESUMO

Preterm infants are at risk for a broad spectrum of neurobehavioral disabilities associated with diffuse disturbances in cortical growth and development. During brain development, subplate neurons (SPNs) are a largely transient population that serves a critical role to establish functional cortical circuits. By dynamically integrating into developing cortical circuits, they assist in consolidation of intracortical and extracortical circuits. Although SPNs reside in close proximity to cerebral white matter, which is particularly vulnerable to oxidative stress, the susceptibility of SPNs remains controversial. We determined SPN responses to two common insults to the preterm brain: hypoxia-ischemia and hypoxia. We used a preterm fetal sheep model using both sexes that reproduces the spectrum of human cerebral injury and abnormal cortical growth. Unlike oligodendrocyte progenitors, SPNs displayed pronounced resistance to early or delayed cell death from hypoxia or hypoxia-ischemia. We thus explored an alternative hypothesis that these insults alter the maturational trajectory of SPNs. We used DiOlistic labeling to visualize the dendrites of SPNs selectively labeled for complexin-3. SPNs displayed reduced basal dendritic arbor complexity that was accompanied by chronic disturbances in SPN excitability and synaptic activity. SPN dysmaturation was significantly associated with the level of fetal hypoxemia and metabolic stress. Hence, despite the resistance of SPNs to insults that trigger white matter injury, transient hypoxemia disrupted SPN arborization and functional maturation during a critical window in cortical development. Strategies directed at limiting the duration or severity of hypoxemia during brain development may mitigate disturbances in cerebral growth and maturation related to SPN dysmaturation.SIGNIFICANCE STATEMENT The human preterm brain commonly sustains blood flow and oxygenation disturbances that impair cerebral cortex growth and cause life-long cognitive and learning disabilities. We investigated the fate of subplate neurons (SPNs), which are a master regulator of brain development that plays critical roles in establishing cortical connections to other brain regions. We used a preterm fetal sheep model that reproduces key features of brain injury in human preterm survivors. We analyzed the responses of fetal SPNs to transient disturbances in fetal oxygenation. We discovered that SPNs are surprisingly resistant to cell death from low oxygen states but acquire chronic structural and functional changes that suggest new strategies to prevent learning problems in children and adults that survive preterm birth.


Assuntos
Hipóxia/patologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Dendritos/fisiologia , Feminino , Hipóxia/complicações , Masculino , Degeneração Neural/etiologia , Degeneração Neural/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ovinos , Fatores de Tempo
5.
Geroscience ; 44(4): 1-14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612774

RESUMO

Patients with Alzheimer's disease (AD) often have cerebral white matter (WM) hyperintensities on MRI and microinfarcts of presumed microvascular origin pathologically. Here, we determined if vasodilator dysfunction of WM-penetrating arterioles is associated with pathologically defined WM injury and disturbances in quantitative MRI-defined WM integrity in patients with mixed microvascular and AD pathology. We analyzed tissues from 28 serially collected human brains from research donors diagnosed with varying degrees of AD neuropathologic change (ADNC) with or without cerebral microinfarcts (mVBI). WM-penetrating and pial surface arteriolar responses to the endothelium-dependent agonist bradykinin were quantified ex vivo with videomicroscopy. Vascular endothelial nitric oxide synthase (eNOS) and NAD(P)H-oxidase (Nox1, 2 and 4 isoforms) expression were measured with quantitative PCR. Glial fibrillary acidic protein (GFAP)-labeled astrocytes were quantified by unbiased stereological approaches in regions adjacent to the sites of WM-penetrating vessel collection. Post-mortem diffusion tensor imaging (DTI) was used to measure mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA), quantitative indices of WM integrity. In contrast to pial surface arterioles, white matter-penetrating arterioles from donors diagnosed with high ADNC and mVBI exhibited a significantly reduced dilation in response to bradykinin when compared to the other groups. Expression of eNOS was reduced, whereas Nox1 expression was increased in WM arterioles in AD and mVBI cases. WM astrocyte density was increased in AD and mVBI, which correlated with a reduced vasodilation in WM arterioles. Moreover, in cases with low ADNC, bradykinin-induced WM arteriole dilation correlated with lower ADC and higher FA values. Comorbid ADNC and mVBI appear to synergistically interact to selectively impair bradykinin-induced vasodilation in WM-penetrating arterioles, which may be related to reduced nitric oxide- and excess reactive oxygen species-mediated vascular endothelial dysfunction. WM arteriole vasodilator dysfunction is associated with WM injury, as supported by reactive astrogliosis and MRI-defined disrupted WM microstructural integrity.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/complicações , Imagem de Tensor de Difusão/métodos , Bradicinina , Vasodilatadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA