Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 66(4): 709-723, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459178

RESUMO

AIMS/HYPOTHESIS: The rapid remission of type 2 diabetes by a diet very low in energy correlates with a marked improvement in glucose-stimulated insulin secretion (GSIS), emphasising the role of beta cell dysfunction in the early stages of the disease. In search of novel mechanisms of beta cell dysfunction after long-term exposure to mild to severe glucotoxic conditions, we extensively characterised the alterations in insulin secretion and upstream coupling events in human islets cultured for 1-3 weeks at ~5, 8, 10 or 20 mmol/l glucose and subsequently stimulated by an acute stepwise increase in glucose concentration. METHODS: Human islets from 49 non-diabetic donors (ND-islets) and six type 2 diabetic donors (T2D-islets) were obtained from five isolation centres. After shipment, the islets were precultured for 3-7 days in RPMI medium containing ~5 mmol/l glucose and 10% (vol/vol) heat-inactivated FBS with selective islet picking at each medium renewal. Islets were then cultured for 1-3 weeks in RPMI containing ~5, 8, 10 or 20 mmol/l glucose before measurement of insulin secretion during culture, islet insulin and DNA content, beta cell apoptosis and cytosolic and mitochondrial glutathione redox state, and assessment of dynamic insulin secretion and upstream coupling events during acute stepwise stimulation with glucose [NAD(P)H autofluorescence, ATP/(ATP+ADP) ratio, electrical activity, cytosolic Ca2+ concentration ([Ca2+]c)]. RESULTS: Culture of ND-islets for 1-3 weeks at 8, 10 or 20 vs 5 mmol/l glucose did not significantly increase beta cell apoptosis or oxidative stress but decreased insulin content in a concentration-dependent manner and increased beta cell sensitivity to subsequent acute stimulation with glucose. Islet glucose responsiveness was higher after culture at 8 or 10 vs 5 mmol/l glucose and markedly reduced after culture at 20 vs 5 mmol/l glucose. In addition, the [Ca2+]c and insulin secretion responses to acute stepwise stimulation with glucose were no longer sigmoid but bell-shaped, with maximal stimulation at 5 or 10 mmol/l glucose and rapid sustained inhibition above that concentration. Such paradoxical inhibition was, however, no longer observed when islets were acutely depolarised by 30 mmol/l extracellular K+. The glucotoxic alterations of beta cell function were fully reversible after culture at 5 mmol/l glucose and were mimicked by pharmacological activation of glucokinase during culture at 5 mmol/l glucose. Similar results to those seen in ND-islets were obtained in T2D-islets, except that their rate of insulin secretion during culture at 8 and 20 mmol/l glucose was lower, their cytosolic glutathione oxidation increased after culture at 8 and 20 mmol/l glucose, and the alterations in GSIS and upstream coupling events were greater after culture at 8 mmol/l glucose. CONCLUSIONS/INTERPRETATION: Prolonged culture of human islets under moderate to severe glucotoxic conditions markedly increased their glucose sensitivity and revealed a bell-shaped acute glucose response curve for changes in [Ca2+]c and insulin secretion, with maximal stimulation at 5 or 10 mmol/l glucose and rapid inhibition above that concentration. This novel glucotoxic alteration may contribute to beta cell dysfunction in type 2 diabetes independently from a detectable increase in beta cell apoptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Glucose/metabolismo , Secreção de Insulina , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glutationa/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas
2.
Nucleic Acids Res ; 46(19): 10302-10318, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30247717

RESUMO

Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic ß-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in ß-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced ß-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic ß-cell demise relevant to monogenic and polygenic forms of diabetes.


Assuntos
Metilação de DNA , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Metiltransferases/genética , RNA de Transferência/metabolismo , Idoso , Animais , Apoptose/genética , Morte Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Fragmentação do DNA , Diabetes Mellitus/metabolismo , Ligação Genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Secretoras de Insulina/fisiologia , Metiltransferases/deficiência , Metiltransferases/metabolismo , Pessoa de Meia-Idade , Mutação , Ratos
3.
Sci Transl Med ; 12(564)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028705

RESUMO

Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but strategies using systemic antioxidants have generally failed to prevent it. We sought to identify key regulators of oxidant-mediated cardiac hypertrophy amenable to targeted pharmacological therapy. Specific isoforms of the aquaporin water channels have been implicated in oxidant sensing, but their role in heart muscle is unknown. RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalized with NADPH oxidase-2 and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2 Deletion of Aqp1 or selective blockade of the AQP1 intrasubunit pore inhibited H2O2 transport in mouse and human cells and rescued the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. Treatment of mice with a clinically approved AQP1 inhibitor, Bacopaside, attenuated cardiac hypertrophy. We conclude that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 by the water channel AQP1 and that inhibitors of AQP1 represent new possibilities for treating hypertrophic cardiomyopathies.


Assuntos
Aquaporina 1 , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
4.
Antioxid Redox Signal ; 30(3): 297-313, 2019 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756464

RESUMO

Aims: Whether H2O2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic ß cells is highly controversial. We used two H2O2-sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on ß cell cytosolic and mitochondrial H2O2 concentrations. We then tested the effects of low H2O2 and menadione concentrations on insulin secretion. Results: RoGFP2-Orp1 was more sensitive than HyPer to H2O2 (response at 2-5 vs. 10 µM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 µM exogenous H2O2. The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H2O2 (1-15 µM) did not affect insulin secretion. By contrast, menadione (1-5 µM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Innovation: Subcellular changes in ß cell H2O2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H2O2 levels in ß cells and promote degradation of exogenously supplied H2O2 in both cytosolic and mitochondrial compartments. Conclusion: The GSIS occurs independently of a detectable increase in ß cell cytosolic or mitochondrial H2O2 levels.


Assuntos
Citosol/efeitos dos fármacos , Glucose/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Citosol/metabolismo , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Mitocôndrias/metabolismo , Oxirredução , Ratos , Ratos Wistar
5.
Free Radic Res ; 52(2): 256-266, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29320894

RESUMO

The ability of certain cancer cells to maintain a highly reduced intracellular environment is correlated with aggressiveness and drug resistance. Since the glutathione (GSH) and thioredoxin (TRX) systems cooperate to a tight regulation of ROS in cell physiology, and to a stimulation of tumour initiation and progression, modulation of the GSH and TRX pathways are emerging as new potential targets in cancer. In vivo methods to assess changes in tumour redox status are critically needed to assess the relevance of redox-targeted agents. The current study assesses in vitro and in vivo biomarkers of tumour redox status in response to treatments targeting the GSH and TRX pathways, by comparing cytosolic and mitochondrial redox nitroxide electron paramagnetic resonance (EPR) probes, and cross-validation with redox dynamic fluorescent measurement. For that purpose, the effect of the GSH modulator buthionine sulfoximine (BSO) and of the TRX reductase inhibitor auranofin were measured in vitro using both cytosolic and mitochondrial EPR and roGFP probes in breast and cervical cancer cells. In vivo, mice bearing breast or cervical cancer xenografts were treated with the GSH or TRX modulators and monitored using the mito-TEMPO spin probe. Our data highlight the importance of using mitochondria-targeted spin probes to assess changes in tumour redox status induced by redox modulators. Further in vivo validation of the mito-tempo spin probe with alternative in vivo methods should be considered, yet the spin probe used in vivo in xenografts demonstrated sensitivity to the redox status modulators.


Assuntos
Neoplasias da Mama/metabolismo , Glutationa/efeitos dos fármacos , Estresse Oxidativo , Tiorredoxinas/antagonistas & inibidores , Neoplasias do Colo do Útero/metabolismo , Animais , Biomarcadores/análise , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Oxirredução , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA