RESUMO
Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.
Assuntos
Coinfecção , Ostreidae , Animais , Humanos , Ecossistema , Bioensaio , Comportamento CooperativoRESUMO
Crassostrea gigas oysters represent a significant global food source with 4.7 million tons harvested per year. In 2001, the bacterium Vibrio aestuarianus subsp. francensis emerged as a pathogen that causes adult oyster mortality in France and Ireland. Its impact on oyster aquaculture has increased in Europe since its re-emergence in 2012. To better understand the evolutionary mechanisms leading to the emergence and persistence over time of this pathogen, we conducted a survey of mollusc diseases through national reference laboratories across Europe. We analysed 54 new genomes of Vibrio aestuarianus (Va) isolated from multiple environmental compartments since 2001, in areas with and without bivalve mortalities. We used a combination of comparative genomics and population genetics approaches and show that Va has a classical epidemic population structure from which the pathogenic Va francensis subspecies emerged and clonally expanded. Furthermore, we identified a specific cus-cop-containing island conferring copper resistance to Va francensis whose acquisition may have favoured the emergence of pathogenic lineages adapted and specialized to oysters.
Assuntos
Crassostrea , Vibrio , Animais , Vibrio/genética , Europa (Continente) , Crassostrea/genética , Crassostrea/microbiologiaRESUMO
Vibrio parahaemolyticus infection in humans is associated with raw oyster consumption. Evaluation of V. parahaemolyticus presence in oysters is of most interest because of the economic and public health issues that it represents. To explore V. parahaemolyticus accumulation and depuration in adult Crassostrea gigas, we developed a GFP-tagged V. parahaemolyticus strain (IFVp201-gfp+ ), as well as a rapid and efficient quantification method in C. gigas oysters haemolymph by flow cytometry. Impact of the life history of C. gigas on accumulation and depuration of V. parahaemolyticus IFVp201 was subsequently investigated. We found that naive oysters, i.e. grown in controlled facilities with UV treated seawater, accumulated significantly more IFVp201 than environmental oysters, i.e. grown in intertidal environment. We hypothesized that environmental oysters could have been immune primed, thus could limit V. parahaemolyticus accumulation. Meanwhile, both naive and environmental oysters had similar depuration rates.
Assuntos
Crassostrea , Vibrioses , Vibrio parahaemolyticus , Animais , Contagem de Colônia Microbiana , Humanos , Alimentos MarinhosRESUMO
BACKGROUND: In the animal kingdom, mollusca is an important phylum of the Lophotrochozoa. However, few studies have investigated the molecular cascade of sex determination/early gonadal differentiation within this phylum. The oyster Crassostrea gigas is a sequential irregular hermaphrodite mollusc of economic, physiological and phylogenetic importance. Although some studies identified genes of its sex-determining/-differentiating pathway, this particular topic remains to be further deepened, in particular with regard to the expression patterns. Indeed, these patterns need to cover the entire period of sex lability and have to be associated to future sex phenotypes, usually impossible to establish in this sequential hermaphrodite. This is why we performed a gonadal RNA-Seq analysis of diploid male and female oysters that have not changed sex for 4 years, sampled during the entire time-window of sex determination/early sex differentiation (stages 0 and 3 of the gametogenetic cycle). This individual long-term monitoring gave us the opportunity to explain the molecular expression patterns in the light of the most statistically likely future sex of each oyster. RESULTS: The differential gene expression analysis of gonadal transcriptomes revealed that 9723 genes were differentially expressed between gametogenetic stages, and 141 between sexes (98 and 43 genes highly expressed in females and males, respectively). Eighty-four genes were both stage- and sex-specific, 57 of them being highly expressed at the time of sex determination/early sex differentiation. These 4 novel genes including Trophoblast glycoprotein-like, Protein PML-like, Protein singed-like and PREDICTED: paramyosin, while being supported by RT-qPCR, displayed sexually dimorphic gene expression patterns. CONCLUSIONS: This gonadal transcriptome analysis, the first one associated with sex phenotypes in C. gigas, revealed 57 genes highly expressed in stage 0 or 3 of gametogenesis and which could be linked to the future sex of the individuals. While further study will be needed to suggest a role for these factors, some could certainly be original potential actors involved in sex determination/early sex differentiation, like paramyosin and could be used to predict the future sex of oysters.
Assuntos
Crassostrea , Animais , Crassostrea/genética , Feminino , Perfilação da Expressão Gênica , Gônadas , Humanos , Masculino , Fenótipo , Filogenia , Diferenciação Sexual/genética , TranscriptomaRESUMO
Cockle mortality events have been reported in northern France since 2012. In the present study, we describe and investigate the implication of a potential bacterial causative agent in cockle mortality. Bacteria isolated from five different cockle mortality events were characterized and studied. Using phenotypic analysis combined with DNA-DNA hybridization (DDH) and whole genome sequencing, the isolates were shown to belong to Vibrio aestuarianus, a species regularly detected in France during oyster mortality events. Comparison of the strains from cockles with strains from French oysters and the type strain showed that the strains from cockles were genetically different to those from oysters and also different to the V. aestuarianus type strain. Moreover, the cockle and oyster strains were classified into two different, but close, groups both separated from the type strain by: (1) analyses of the ldh gene sequences; (2) DDH assays between 12/122 3T3T (LMG 31436T=DSM 109723T), a representative cockle strain, 02/041T (CIP 109791T=LMG 24517T) representative oyster strain and V. aestuarianus type strain LMG 7909T; (3) average nucleotide identity values calculated on the genomes; and (4) phenotypic traits. Finally, results of MALDI-TOF analyses also revealed specific peaks discriminating the three representative strains. The toxicity of representative strains of these cockle isolates was demonstrated by experimental infection of hatchery-produced cockles. The data therefore allow us to propose two novel subspecies of Vibrio aestuarianus: Vibrio aestuarianus subsp. cardii subsp. nov. for the cockle strains and Vibrio aestuarianus subsp. francensis subsp. nov. for the Pacific oyster strains, in addition to an emended description of the species Vibrio aestuarianus.
Assuntos
Cardiidae/microbiologia , Filogenia , Vibrio/classificação , Animais , Técnicas de Tipagem Bacteriana/métodos , Composição de Bases , DNA Bacteriano/genética , França , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vibrio/isolamento & purificaçãoRESUMO
French commercial hatcheries are massively producing Crassostrea gigas selected for their higher resistance to OsHV-1, and soon should also implement selection for increasing resistance to Vibrio aestuarianus. The first objective of this study was to optimize the breeding programs for dual resistance to OsHV-1 and V. aestuarianus to determine the earliest life stage for which oysters are able to develop disease resistance. Wild stocks and selected families were tested using experimental infections by both pathogens at the larval, spat and juvenile stages. Oyster families could be evaluated for OsHV-1 as soon as the larval stage by a bath method, but this only highlighted the most resistant families; those that showed the highest resistance to V. aestuarianus could be determined using the cohabitation method at the juvenile stage. The second objective of this study was to determine if selection to increase/decrease the resistance to OsHV-1 and V. aestuarianus could have an impact on other major pathogens currently detected in hatchery at the larval stage, and in nursery and field at the spat/juveniles stages (V. coralliilyticus, V. crassostreae, V. tasmaniensis, V. neptunius, V. europaeus, V. harveyi, V. chagasi). No relationship was found between mortality caused by V. aestuarianus/OsHV-1 and the mortality caused by the other virulent bacterial strains tested regardless the stages, except between OsHV-1 and V. tasmaniensis at the juvenile stage. Finally, miscellaneous findings were evidenced such as (1) bath for bacterial challenges was not adapted for spat, (2) the main pathogens at the larval stage were OsHV-1 and V. coralliilyticus using bath, while it was V. coralliilyticus, V. europaeus, and V. neptunius at the juvenile stage by injection, and (4) variation in mortality was observed among families/wild controls for all pathogens at larval and juvenile stages, except for V. harveyi for larvae.
Assuntos
Crassostrea/microbiologia , Vírus de DNA/isolamento & purificação , Vibrio/isolamento & purificação , Animais , Aquicultura , Crassostrea/crescimento & desenvolvimento , Crassostrea/virologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/virologiaRESUMO
BACKGROUND: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). RESULTS: We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. CONCLUSIONS: We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.
Assuntos
Crassostrea/genética , Crassostrea/microbiologia , Animais , Crassostrea/imunologia , Crassostrea/metabolismo , Genes , RNA-Seq , Estresse Fisiológico/genética , TranscriptomaRESUMO
Economically devastating mortality events of farmed and wild shellfish due to infectious disease have been reported globally. Currently, one of the most significant disease threats to Pacific oyster Crassostrea gigas culture is the ostreid herpesvirus 1 (OsHV-1), in particular the emerging OsHV-1 microvariant genotypes. OsHV-1 microvariants (OsHV-1 µvars) are spreading globally, and concern is high among growers in areas unaffected by OsHV-1. No study to date has compared the relative virulence among variants. We provide the first challenge study comparing survival of naïve juvenile Pacific oysters exposed to OsHV-1 µvars from Australia (AUS µvar) and France (FRA µvar). Oysters challenged with OsHV-1 µvars had low survival (2.5% exposed to AUS µvar and 10% to FRA µvar), and high viral copy number as compared to control oysters (100% survival and no virus detected). As our study was conducted in a quarantine facility located ~320 km from the ocean, we also compared the virulence of OsHV-1 µvars using artificial seawater made from either facility tap water (3782 µmol kg-1 seawater total alkalinity) or purchased distilled water (2003 µmol kg-1). Although no differences in survival or viral copy number were detected in oysters exposed to seawater made using tap or distilled water, more OsHV-1 was detected in tanks containing the lower-alkalinity seawater, indicating that water quality may be important for virus transmission, as it may influence the duration of viral viability outside of the host.
Assuntos
Herpesviridae , Animais , Austrália , Crassostrea , DNA Viral , França , Água do MarRESUMO
BACKGROUND: Variants of the Ostreid herpesvirus 1 (OsHV-1) cause high losses of Pacific oysters globally, including in Tomales Bay, California, USA. A suite of new variants, the OsHV-1 microvariants (µvars), cause very high mortalities of Pacific oysters in major oyster-growing regions outside of the United States. There are currently no known Pacific oysters in the United States that are resistant to OsHV-1 as resistance has yet to be evaluated in these oysters. As part of an effort to begin genetic selection for resistance to OsHV-1, 71 families from the Molluscan Broodstock Program, a US West Coast Pacific oyster breeding program, were screened for survival after exposure to OsHV-1 in Tomales Bay. They were also tested in a quarantine laboratory in France where they were exposed to a French OsHV-1 microvariant using a plate assay, with survival recorded from three to seven days post-infection. RESULTS: Significant heritability for survival were found for all time points in the plate assay and in the survival phenotype from a single mortality count in Tomales Bay. Genetic correlations between survival against the French OsHV-1 µvar in the plate assay and the Tomales Bay variant in the field trait were weak or non-significant. CONCLUSIONS: Future breeding efforts will seek to validate the potential of genetic improvement for survival to OsHV-1 through selection using the Molluscan Broodstock Program oysters. The lack of a strong correlation in survival between OsHV-1 variants under this study's exposure conditions may require independent selection pressure for survival to each variant in order to make simultaneous genetic gains in resistance.
Assuntos
Crassostrea/crescimento & desenvolvimento , Vírus de DNA/genética , Resistência à Doença , Animais , Cruzamento , California , Crassostrea/genética , Crassostrea/virologia , Vírus de DNA/classificação , França , Variação Genética , Mortalidade , Seleção GenéticaRESUMO
Although vibrios are frequently associated with marine organisms mortality outbreaks, knowledge on their ecology and pathogenicity is sparse, thus limiting disease management and prophylactic strategies. Here, we investigated V. aestuarianus infection onset and progression in the wild, taking advantage of a 'claire' pond: a semi-closed system with limited seawater renewal, theoretically more adapted to disease transmission. We showed a positive association of the bacteria with oysters, which can constitute a reservoir for the bacteria in the winter. Moreover, passage through oysters was found to be necessary for experimental disease reproduction as vibrios shedding from diseased oysters have higher infectivity than from in vitro grown. We next developed an experimental 'ecologically realistic' infection model in a mesocosm, allowing infection by natural route. By means of this non-invasive protocol, we analysed the pathogenesis of the bacteria and demonstrated the importance of haemolymph for initial colonization and the septicaemic nature of this disease.
Assuntos
Ostreidae/microbiologia , Vibrio/fisiologia , Animais , Interações Hospedeiro-Patógeno , Modelos Biológicos , Estações do Ano , Água do Mar/microbiologiaRESUMO
This study investigated oyster infection dynamics by different strains of Vibrio aestuarianus isolated before and after the apparent re-emergence of this pathogen observed in France in 2011. We conducted experiments to compare minimal infective dose, lethal dose 50 and bacterial shedding for six V. aestuarianus strains. Whatever the strain used, mortality was induced in juvenile oysters by intramuscular injection and reached 90-100% of mortality within 5 days. Moreover, bacterial shedding was comparable among strains and reached its maximum after 20 h (≈10 EXP5 bacteria/mL/animal). Similarly, our first estimations of lethal dose 50 were comparable among strains (minimal infective dose around 0.4 × 10EXP5 bacteria/mL and LD50 around 10EXP5 bacteria/mL) by using seawater containing freshly shed bacteria. These results indicate that, at least with these criteria, despite V. aestuarianus strains genetic diversity, the disease process is similar. The strains isolated after the apparent re-emergence of the bacteria in 2011, do not present a more acute virulence phenotype than the reference strains isolated between 2002 and 2007. Finally, our study provides original and noteworthy data indicating that infected oysters shed bacteria at a level above the threshold of LD50 a few days before they die, meaning that infection is expected to spread in a susceptible population.
Assuntos
Crassostrea/microbiologia , Vibrioses/veterinária , Vibrio , Animais , Derrame de Bactérias , Organismos Livres de Patógenos Específicos , Vibrio/crescimento & desenvolvimento , Vibrio/patogenicidade , Vibrioses/microbiologiaRESUMO
BACKGROUND: In France, two main diseases threaten Pacific oyster production. Since 2008, Crassostrea gigas spat have suffered massive losses due to the ostreid herpesvirus OsHV-1, and since 2012, significant mortalities in commercial-size adults have been related to infection by the bacterium Vibrio aestuarianus. The genetic basis for resistance to V. aestuarianus and OsHV-1 and the nature of the genetic correlation between these two traits were investigated by using 20 half-sib sire families, each containing two full-sib families. For each disease, controlled infectious challenges were conducted using naïve oysters that were 3 to 26 months old. In addition, siblings were tested under field, pond and raceway conditions to determine whether laboratory trials reflected mortality events that occur in the oyster industry. RESULTS: First, we estimated the genetic basis of resistance to V. aestuarianus in C. gigas. Susceptibility to the infection was low for oysters in spat stage but increased with later life stages. Second, we confirmed a strong genetic basis of resistance to OsHV-1 infection at early stages and demonstrated that it was also strong at later stages. Most families had increased resistance to OsHV-1 infection from the spat to adult stages, while others consistently showed low or high mortality rates related to OsHV-1 infection, regardless of the life stage. Our third main finding was the absence of genetic correlations between resistance to OsHV-1 infection and resistance to V. aestuarianus infection. CONCLUSIONS: Selective breeding to enhance resistance to OsHV-1 infection could be achieved through selective breeding at early stages and would not affect resistance to V. aestuarianus infection. However, our results suggest that the potential to select for improved resistance to V. aestuarianus is lower. Selection for dual resistance to OsHV-1 and V. aestuarianus infection in C. gigas might reduce the impact of these two major diseases by selecting families that have the highest breeding values for resistance to both diseases.
Assuntos
Crassostrea/genética , Resistência à Doença/genética , Vibrio/patogenicidade , Animais , Crassostrea/crescimento & desenvolvimento , Crassostrea/imunologia , Crassostrea/microbiologiaRESUMO
French production of the Pacific cupped oyster, Crassostrea gigas, is currently threatened by two pathogens, OsHV-1 and V. aestuarianus. While oysters selected for their higher resistance to OsHV-1 are now available for the industry, the impact of V. aestuarianus on such oysters is unknown, especially for triploids. In addition, experimental infection has used the virus or the bacteria alone, but there have been no investigations of dual exposure to these pathogens. This study is the first report of single or dual exposure in spat (Spat1 and Spat2), juvenile and adult naïve oysters. For each of the two stocks evaluated, unselected oysters and oysters selected for their higher resistance to OsHV-1 infection were tested, as well as their triploid siblings of the selected oysters produced using cytochalasin B. We confirmed that resistance to OsHV-1 infection and susceptibility to V. aestuarianus increased with age and size, although selected oysters were not significantly impacted by OsHV-1 whatever their ploidy, size or age. We found different mortality patterns depending on the pathogen tested. The mortality pattern was similar for oysters exposed to OsHV-1 or to both pathogens in the Spat1 trial (4months old and 1.9g). The mortality pattern was similar for oysters exposed to V. aestuarianus or to both pathogens in the Adult trial (25months old and 63.1g). Surprisingly, mortality was much higher (ranging from 75.9% to 100%), in particular for the selected oysters, for the Spat2 (8months old/3.9g) and Juvenile trials (16months old/18.4g) given a dual exposure, regardless of the level of selection for OsHV-1 and the ploidy state. Our findings highlight an important threat for oyster farmers: oysters exposed to both pathogens could experience dramatic mortality rates, even in oysters selected for their higher resistance to OsHV-1. Finally, our study demonstrated for the first time that triploid oysters were more susceptible to experimental challenges with V. aestuarianus at the spat stage than their diploid siblings. However, the difference in mortality between the triploids and diploids remained limited and ranged from 22.9% to 6.6% for spat and adults, respectively with a relatively regularly decrease in the difference with increased age.
Assuntos
Crassostrea/microbiologia , Crassostrea/fisiologia , Vibrioses/veterinária , Animais , Estágios do Ciclo de Vida , VibrioRESUMO
Vibrio tubiashii is a marine pathogen isolated from larval and juvenile bivalve molluscs that causes bacillary necrosis. Recent studies demonstrated the isolation of this species in a French experimental hatchery/nursery affecting Crassostrea gigas spat in 2007. Here, using larvae of C. gigas as an interaction model, we showed that the French V. tubiashii is virulent to larvae and can cause bacillary necrosis symptoms with an LD50 of about 2.3 × 10(3) c.f.u. ml(-1) after 24 h. Moreover, complete or gel permeation HPLC fractionated extracellular products (ECPs) of this strain appeared toxic to larvae. MS-MS analysis of the different ECP fractions revealed the existence of an extracellular metalloprotease and other suspected virulence factors. This observation is also supported by the expression level of some potential virulence factors. The overall results suggest that the pathology caused by the French V. tubiashii in C. gigas oysters is caused by a group of toxic factors and not only the metalloprotease.
Assuntos
Metaloproteases/genética , Ostreidae/microbiologia , Vibrio/fisiologia , Vibrio/patogenicidade , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/genética , Expressão Gênica , Larva/microbiologia , Metaloproteases/metabolismo , Fenótipo , Virulência/genéticaRESUMO
Since 2008, the emergent virus OsHV-1µvar has provoked massive mortality events in Crassostrea gigas spat and juveniles in France. Since 2012, mortality driven by the pathogenic bacteria Vibrio aestuarianus has stricken market-sized adults. A hypothesis to explain the sudden increase in mortality observed in France since 2012 is that selective pressure due to recurrent viral infections could have led to a higher susceptibility of adults to Vibrio infection. In our study, two OsHV-1-resistant lines (AS and BS) and their respective controls (AC and BC) were experimentally challenged in the laboratory to determine their level of susceptibility to V. aestuarianus infection. At the juvenile stage, the selected lines exhibited lower mortality (14 and 33%) than the control lines (71 and 80%), suggesting dual-resistance to OsHV-1 and V. aestuarianus in C. gigas. Interestingly, this pattern was not observed at the adult stage, where higher mortality was detected for AS (68%) and BC (62%) than AC (39%) and BS (49%). These results were confirmed by the analysis of the expression of 31 immune-related genes in unchallenged oysters. Differential gene expression discriminated oysters according to their susceptibility to infection at both the juvenile and adult stages, suggesting that resistance to V. aestuarianus infection resulted in complex interactions between the genotype, stage of development and immunity status. Finally, survivors of the V. aestuarianus challenge at the juvenile stage still exhibited significant mortality at the adult stage during a second and third V. aestuarianus challenge, indicating that these survivors were not genetically resistant.
Assuntos
Crassostrea/microbiologia , Seleção Genética , Vibrio/fisiologia , Animais , Crassostrea/genética , Crassostrea/virologia , Vírus de DNA/fisiologia , FrançaRESUMO
Oyster species suffer from numerous disease outbreaks, often causing high mortality. Because the environment cannot be controlled, genetic improvement for disease resistance to pathogens is an attractive option to reduce their impact on oyster production. We review the literature on selective breeding programs for disease resistance in oyster species, and the impact of triploidy on such resistance. Significant response to selection to improve disease resistance was observed in all studies after two to four generations of selection for Haplosporidium nelsoni and Roseovarius crassostrea in Crassostrea virginica, OsHV-1 in Crassostrea gigas, and Martelia sydneyi in Saccostrea glomerata. Clearly, resistance in these cases was heritable, but most of the studies failed to provide estimates for heritability or genetic correlations with other traits, e.g., between resistance to one disease and another. Generally, it seems breeding for higher resistance to one disease does not confer higher resistance or susceptibility to another disease. For disease resistance in triploid oysters, several studies showed that triploidy confers neither advantage nor disadvantage in survival, e.g., OsHV-1 resistance in C. gigas. Other studies showed higher disease resistance of triploids over diploid as observed in C. virginica and S. glomerata. One indirect mechanism for triploids to avoid disease was to grow faster, thus limiting the span of time when oysters might be exposed to disease.
Assuntos
Crassostrea/fisiologia , Resistência à Doença/genética , AnimaisRESUMO
BACKGROUND: Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. RESULTS: The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. CONCLUSIONS: In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.
Assuntos
Herpesviridae/genética , Ostreidae/genética , Transcriptoma , Animais , DNA Viral/genética , Suscetibilidade a Doenças , Genes Virais , Herpesviridae/metabolismo , Interações Hospedeiro-Patógeno , Ostreidae/metabolismo , Ostreidae/virologia , Carga ViralRESUMO
BACKGROUND: The Pacific oyster Crassostrea gigas is one of the main cultivated invertebrate species worldwide. Since 2008, oyster juveniles have been confronted with a lethal syndrome known as the Pacific Oyster Mortality Syndrome (POMS). POMS is a polymicrobial disease initiated by a primary infection with the herpesvirus OsHV-1 µVar that creates an oyster immunocompromised state and evolves towards a secondary fatal bacteremia. RESULTS: In the present article, we describe the implementation of an unprecedented combination of metabarcoding and metatranscriptomic approaches to show that the sequence of events in POMS pathogenesis is conserved across infectious environments. We also identified a core bacterial consortium which, together with OsHV-1 µVar, forms the POMS pathobiota. This bacterial consortium is characterized by high transcriptional activities and complementary metabolic functions to exploit host's resources. A significant metabolic specificity was highlighted at the bacterial genus level, suggesting low competition for nutrients between members of the core bacteria. CONCLUSIONS: Lack of metabolic competition between the core bacteria might favor complementary colonization of host tissues and contribute to the conservation of the POMS pathobiota across distinct infectious environments.
RESUMO
Disease emergence is accelerating with global changes. Understanding by which mechanisms host populations can rapidly adapt will be crucial for management practices. Pacific oyster mortality syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations, and rapid adaptation may arise through genetics and epigenetics. In this study, we used (epi)genome-wide association mapping to show that oysters differentially exposed to POMS displayed genetic and epigenetic signatures of selection. Consistent with higher resistance to POMS, the genes targeted included many genes in several pathways related to immunity. By combining correlation, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of phenotypic variation was explained by interactions between the genetic and epigenetic information, ~14% by the genome, and up to 25% by the epigenome alone. Similar to genetically based adaptation, epigenetic mechanisms notably governing immune responses can contribute substantially to the rapid adaptation of hosts to emerging infectious diseases.
Assuntos
Estudo de Associação Genômica Ampla , Ostreidae , Animais , Aclimatação , Epigênese Genética , Síndrome , Variação GenéticaRESUMO
Mortality outbreaks of young Pacific oysters, Crassostrea gigas, have seriously affected the oyster-farming economy in several countries around the world. Although the causes of these mortality outbreaks appear complex, a viral agent has been identified as the main factor: a herpesvirus called ostreid herpesvirus 1 (OsHV-1). Autophagy is an important degradation pathway involved in the response to several pathologies including viral diseases. In C. gigas, recent studies indicate that this pathway is conserved and functional in at least haemocytes and the mantle. Furthermore, an experimental infection in combination with compounds known to inhibit or induce autophagy in mammals revealed that autophagy is involved in the response to OsHV-1 infection. In light of these results, the aim of this study was to determine the role of autophagy in the response of the Pacific oyster to infection by virus OsHV-1. For this purpose, an experimental infection in combination with a modulator of autophagy was performed on Pacific oysters known to have intermediate susceptibility to OsHV-1 infection. In haemolymph and the mantle, the autophagy response was monitored by flow cytometry, western blotting, and real-time PCR. At the same time, viral infection was evaluated by quantifying viral DNA and RNA amounts by real-time PCR. Although the results showed activation of autophagy in haemolymph and the mantle 14 hours post infection (after viral replication was initiated), they were also indicative of different regulatory mechanisms of autophagy in the two tissues, thus supporting an important function of autophagy in the response to virus OsHV-1.