RESUMO
PURPOSE: Clinical next-generation sequencing is an effective approach for identifying pathogenic sequence variants that are medically actionable for participants and families but are not associated with the participant's primary diagnosis. These variants are called secondary findings (SFs). According to the literature, there is no report of the types and frequencies of SFs in a large pediatric cohort that includes substantial African-American participants. We sought to investigate the types (including American College of Medical Genetics and Genomics [ACMG] and non-ACMG-recommended gene lists), frequencies, and rates of SFs, as well as the effects of SF disclosure on the participants and families of a large pediatric cohort at the Center for Applied Genomics at The Children's Hospital of Philadelphia. METHODS: We systematically identified pathogenic (P) and likely pathogenic (LP) variants in established disease-causing genes, adhering to ACMG v3.2 secondary finding guidelines and beyond. For non-ACMG SFs, akin to incidental findings in clinical settings, we utilized a set of criteria focusing on pediatric onset, high penetrance, moderate to severe phenotypes, and the clinical actionability of the variants. This criteria-based approach was applied rather than using a fixed gene list to ensure that the variants identified are likely to affect participant health significantly. To identify and categorize these variants, we used a clinical-grade variant classification standard per ACMG/AMP recommendations; additionally, we conducted a detailed literature search to ensure a comprehensive exploration of potential SFs relevant to pediatric participants. RESULTS: We report a distinctive distribution of 1464 P/LP SF variants in 16,713 participants. There were 427 unique variants in ACMG genes and 265 in non-ACMG genes. The most frequently mutated genes among the ACMG and non-ACMG gene lists were TTR(41.6%) and CHEK2 (7.16%), respectively. Overall, variants of possible medical importance were found in 8.76% of participants in both ACMG (5.81%) and non-ACMG (2.95%) genes. CONCLUSION: Our study revealed that 8.76% of a large, multiethnic pediatric cohort carried actionable secondary genetic findings, with 5.81% in ACMG genes and 2.95% in non-ACMG genes. These findings emphasize the importance of including diverse populations in genetic research to ensure that all groups benefit from early identification of disease risks. Our results provide a foundation for expanding the ACMG gene list and improving clinical care through early interventions.
RESUMO
We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Whole-transcriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.
Assuntos
Actinas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Dendritos/patologia , Epilepsia/etiologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação , Transtornos do Neurodesenvolvimento/etiologia , Neurônios/patologia , Adulto , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , Dendritos/metabolismo , Epilepsia/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia , Neurônios/metabolismo , Adulto JovemRESUMO
Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap complicating the clinical diagnosis. Whole-exome sequencing (WES) has increased the overall diagnostic rate considerably. However, the upper limit of this method remains ill-defined, hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76 predominantly adult and sporadic-onset patients, expanded the total number of cases to 260, and introduced analyses for copy number variation and repeat expansion in a representative subset. For new cases (n = 184), our resulting clinically relevant detection rate remained stable at 47% with 24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly improved the pathogenic rate by 7%. For the combined cohort (n = 260), the total observed clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar neurological phenotypes report comparable rates. This consistency across multiple cohorts suggests that, despite continued technical and analytical advancements, an approximately 50% diagnostic rate marks a relative ceiling for current WES-based methods and a more comprehensive genome-wide assessment is needed to identify the missing causative genetic etiologies for cerebellar ataxia and related neurodegenerative diseases.
Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Sequenciamento do Exoma , Exoma , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Variações do Número de Cópias de DNA , Estudos de Associação Genética , Ligação Genética , Predisposição Genética para Doença , Humanos , Repetições de MicrossatélitesRESUMO
Pathogenic variants in the CFTR gene are causative of classic cystic fibrosis (CF) as well as some nonclassic CF phenotypes. In 2001, CF became the first target of pan-ethnic universal carrier screening by molecular methods. The American College of Medical Genetics and Genomics (ACMG) recommended a core panel of 23 disease-causing variants as the minimal set to be included in pan-ethnic carrier screening of individuals with no family history of the disease, and these variants were usually assessed using targeted methods. The original recommendation also left open the option for laboratories to offer expanded CFTR variant panels; however, at the time, expanded CFTR variant panels were met with some controversy on the basis of the available technologies and the limited phenotypic knowledge of rare variants. Both of those aspects have now evolved, prompting this update of the ACMG technical standards for CFTR variant testing.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Testes Genéticos/normas , Genética Médica , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Genômica , Humanos , Mutação , Estados UnidosRESUMO
Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies. We assessed the relative frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We identified a relatively high frequency of disorders previously thought of as very rare, including Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes for some of the higher frequency disorders. Relative frequency of leukodystrophies previously considered very rare suggests these disorders may benefit from expanded carrier screening.
Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Doenças Desmielinizantes/genética , Malformações do Sistema Nervoso/genética , Doença de Pelizaeus-Merzbacher/genética , RNA Polimerase III/genética , Tubulina (Proteína)/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Desmielinizantes/epidemiologia , Doenças Desmielinizantes/patologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Doença de Pelizaeus-Merzbacher/epidemiologia , Doença de Pelizaeus-Merzbacher/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
PURPOSE: Clinical laboratories performing exome or genome sequencing (ES/GS) are familiar with the challenges associated with proper consenting for and reporting of medically actionable secondary findings based on recommendations from the American College of Medical Genetics and Genomics (ACMG). Misattributed parentage is another type of unanticipated finding a laboratory may encounter during family-based ES/GS; however, there are currently no professional recommendations related to the proper consenting for and reporting of misattributed parentage encountered during ES/GS. METHODS: We surveyed 10 clinical laboratories offering family-based ES/GS regarding their consent language, discovery, and reporting of misattributed parentage. RESULTS: Many laboratories have already developed their own practices/policies for these issues, which do not necessarily agree with those from other labs. CONCLUSION: There are several other possibilities besides true misattributed parentage that could result in similar laboratory findings, and laboratories often feel they lack sufficient information to make formal conclusions on a report regarding the true genetic relatedness of the submitted samples. However, understanding the genetic relatedness (or lack thereof) of the samples submitted for family-based ES/GS has medical relevance. Therefore, professional recommendations for the appropriate handling of suspected misattributed parentage encountered during ES/GS are needed to help standardize current clinical laboratory practices.
Assuntos
Testes Genéticos/tendências , Genética Médica/tendências , Genômica/tendências , Pais , Serviços de Laboratório Clínico , Exoma/genética , Feminino , Genoma Humano/genética , Humanos , Achados Incidentais , Consentimento Livre e Esclarecido , Masculino , Inquéritos e Questionários , Sequenciamento do Exoma/tendências , Sequenciamento Completo do Genoma/tendênciasRESUMO
ClinVar provides open access to variant classifications shared from many clinical laboratories. Although most classifications are consistent across laboratories, classification differences exist. To facilitate resolution of classification differences on a large scale, clinical laboratories were encouraged to reassess outlier classifications of variants with medically significant differences (MSDs). Outliers were identified by first comparing ClinVar submissions from 41 clinical laboratories to detect variants with MSDs between the laboratories (650 variants). Next, MSDs were filtered for variants with ≥3 classifications (244 variants), of which 87.6% (213 variants) had a majority consensus in ClinVar, thus allowing for identification of outlier classifications in need of reassessment. Laboratories with outlier classifications were sent a custom report and encouraged to reassess variants. Results were returned for 204 (96%) variants, of which 62.3% (127) were resolved. Of those 127, 64.6% (82) were resolved due to reassessment prompted by this study and 35.4% (45) resolved by a previously completed reassessment. This study demonstrates a scalable approach to classification resolution and capitalizes on the value of data sharing within ClinVar. These activities will help the community move toward more consistent variant classifications, which will improve the care of patients with, or at risk for, genetic disorders.
Assuntos
Bases de Dados Genéticas , Testes Genéticos/métodos , Variação Genética/genética , Genoma Humano/genética , HumanosRESUMO
Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease.
Assuntos
Códon sem Sentido/genética , Deficiências do Desenvolvimento/genética , Histona Acetiltransferases/genética , Microcefalia/genética , Anormalidades Múltiplas/genética , Acetilação , Pré-Escolar , Exoma , Feminino , Heterozigoto , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Mutação , LinhagemRESUMO
PURPOSE: While the diagnostic success of genomic sequencing expands, the complexity of this testing should not be overlooked. Numerous laboratory processes are required to support the identification, interpretation, and reporting of clinically significant variants. This study aimed to examine the workflow and reporting procedures among US laboratories to highlight shared practices and identify areas in need of standardization. METHODS: Surveys and follow-up interviews were conducted with laboratories offering exome and/or genome sequencing to support a research program or for routine clinical services. The 73-item survey elicited multiple choice and free-text responses that were later clarified with phone interviews. RESULTS: Twenty-one laboratories participated. Practices highly concordant across all groups included consent documentation, multiperson case review, and enabling patient opt-out of incidental or secondary findings analysis. Noted divergence included use of phenotypic data to inform case analysis and interpretation and reporting of case-specific quality metrics and methods. Few laboratory policies detailed procedures for data reanalysis, data sharing, or patient access to data. CONCLUSION: This study provides an overview of practices and policies of experienced exome and genome sequencing laboratories. The results enable broader consideration of which practices are becoming standard approaches, where divergence remains, and areas of development in best practice guidelines that may be helpful.Genet Med advance online publication 03 Novemeber 2016.
Assuntos
Testes Genéticos/métodos , Laboratórios/normas , Análise de Sequência de DNA/métodos , Revelação , Testes Genéticos/normas , Humanos , Achados Incidentais , Disseminação de Informação , Laboratórios/ética , Guias de Prática Clínica como Assunto , Relatório de Pesquisa , Tamanho da Amostra , Análise de Sequência de DNA/normas , Inquéritos e QuestionáriosRESUMO
A 4-month-old male infant presented with severe developmental delay, cerebellar, brainstem, and cutaneous hemangiomas, bilateral tumors (vestibular, hypoglossal, cervical, and lumbar spinal), and few café-au-lait macules. Cerebellar and lumbar tumor biopsies revealed venous telangiectasia and intraneural perineuroma, respectively. Sequencing NF1, NF2, and RASA1 (blood), and NF2 and SMARCB1 (lumbar biopsy) was negative for pathogenic mutations. Clinical exome sequencing (CES), requested for tumor syndrome diagnosis, revealed two heterozygous missense variants, c.359T>C;p.Phe120Ser and c.3344G>A;p.Arg1115Gln, in MLH3 (NM_001040108.1), a DNA mismatch repair (MMR) gene, Polyphen-predicted as probably damaging, and benign, respectively. Sanger sequencing confirmed both variants in the proband, and their absence in the mother; biological father unavailable. Both biopsied tissues were negative for microsatellite instability, and expressed MLH1, MSH2, PMS2, MSH6, and MLH3 immunohistochemically. Chromosomal microarray showed a 133 kb segment copy number duplication of 14q12 region encompassing FOXG1, possibly explaining the developmental delay, but not the tumors. The presence of MLH3 variants with multiple benign neural and vascular tumors was intriguing for their possible role in the pathogenesis of these neoplasms, which were suspicious for, but not diagnostic of, constitutional MMR deficiency. However, functional assays of non-neoplastic patient-derived cells showed intact base-base MMR function. Also, no previous FOXG1-aberrant patient was reported with tumors. We now report a 3-year-old FOXG1-duplicated patient with a yet undescribed tumor syndrome with clinical features of neurofibromatosis types I and II, where several validation studies could not ascertain the significance of CES findings; further studies may elucidate precise mechanisms and diagnosis for clinical management, including tumor surveillance.
Assuntos
Encefalopatias/genética , Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Fatores de Transcrição Forkhead/genética , Proteínas do Tecido Nervoso/genética , Análise de Sequência de DNA/métodos , Neoplasias da Coluna Vertebral/genética , Pré-Escolar , Exoma , Duplicação Gênica , Humanos , Lactente , Masculino , Proteínas MutL , Mutação de Sentido IncorretoAssuntos
Genética Médica , Testes Genéticos , Genoma Humano , Genômica , Células Germinativas , Humanos , Estados UnidosRESUMO
PURPOSE: Sanger sequencing is currently considered the gold standard methodology for clinical molecular diagnostic testing. However, next-generation sequencing has already emerged as a much more efficient means to identify genetic variants within gene panels, the exome, or the genome. We sought to assess the accuracy of next-generation sequencing variant identification in our clinical genomics laboratory with the goal of establishing a quality score threshold for confirmatory Sanger-based testing. METHODS: Confirmation data for reported results from 144 sequential clinical exome-sequencing cases (94 unique variants) and an additional set of 16 variants from comparable research samples were analyzed. RESULTS: Of the 110 total single-nucleotide variants analyzed, 103 variants had a quality score ≥Q500, 103 (100%) of which were confirmed by Sanger sequencing. Of the remaining seven variants with quality scores Assuntos
Exoma/genética
, Genoma Humano/genética
, Sequenciamento de Nucleotídeos em Larga Escala/normas
, Técnicas de Diagnóstico Molecular/métodos
, Polimorfismo de Nucleotídeo Único/genética
, Análise de Sequência de DNA/métodos
, Genótipo
, Humanos
, Análise de Sequência de DNA/economia
, Estudos de Validação como Assunto