Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928082

RESUMO

Vascular remodeling is a very general feature related to angiogenesis and arteriogenesis, which are involved in neovascularization processes [...].


Assuntos
Neovascularização Patológica , Neovascularização Fisiológica , Remodelação Vascular , Humanos , Animais , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Angiogênese
2.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629019

RESUMO

Increasing evidence suggests that lymphocytes play distinct roles in inflammation-induced tissue remodeling and tissue damage. Arteriogenesis describes the growth of natural bypasses from pre-existing collateral arteries. This process compensates for the loss of artery function in occlusive arterial diseases. The role of innate immune cells is widely understood in the process of arteriogenesis, whereas the role of lymphocytes remains unclear and is the subject of the present study. To analyze the role of lymphocytes, we induced arteriogenesis in recombination activating gene-1 (Rag1) knockout (KO) mice by unilateral ligation of the femoral artery. The lack of functional lymphocytes in Rag1 KO mice resulted in reduced perfusion recovery as shown by laser Doppler imaging. Additionally, immunofluorescence staining revealed a reduced vascular cell proliferation along with a smaller inner luminal diameter in Rag1 KO mice. The perivascular macrophage polarization around the growing collateral arteries was shifted to more pro-inflammatory M1-like polarized macrophages. Together, these data suggest that lymphocytes are crucial for arteriogenesis by modulating perivascular macrophage polarization.


Assuntos
Artéria Femoral , Inflamação , Animais , Camundongos , Proliferação de Células , Extremidade Inferior , Camundongos Knockout
3.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955584

RESUMO

Arteriogenesis, the growth of natural bypass blood vessels, can compensate for the loss of arteries caused by vascular occlusive diseases. Accordingly, it is a major goal to identify the drugs promoting this innate immune system-driven process in patients aiming to save their tissues and life. Here, we studied the impact of the Cobra venom factor (CVF), which is a C3-like complement-activating protein that induces depletion of the complement in the circulation in a murine hind limb model of arteriogenesis. Arteriogenesis was induced in C57BL/6J mice by femoral artery ligation (FAL). The administration of a single dose of CVF (12.5 µg) 24 h prior to FAL significantly enhanced the perfusion recovery 7 days after FAL, as shown by Laser Doppler imaging. Immunofluorescence analyses demonstrated an elevated number of proliferating (BrdU+) vascular cells, along with an increased luminal diameter of the grown collateral vessels. Flow cytometric analyses of the blood samples isolated 3 h after FAL revealed an elevated number of neutrophils and platelet-neutrophil aggregates. Giemsa stains displayed augmented mast cell recruitment and activation in the perivascular space of the growing collaterals 8 h after FAL. Seven days after FAL, we found more CD68+/MRC-1+ M2-like polarized pro-arteriogenic macrophages around growing collaterals. These data indicate that a single dose of CVF boosts arteriogenesis by catalyzing the innate immune reactions, relevant for collateral vessel growth.


Assuntos
Venenos Elapídicos , Artéria Femoral , Animais , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Artéria Femoral/metabolismo , Membro Posterior/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia
4.
Blood ; 134(17): 1469-1479, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501155

RESUMO

Fluid shear stress in the vasculature is the driving force for natural bypass growth, a fundamental endogenous mechanism to counteract the detrimental consequences of vascular occlusive disease, such as stroke or myocardial infarction. This process, referred to as "arteriogenesis," relies on local recruitment of leukocytes, which supply growth factors to preexisting collateral arterioles enabling them to grow. Although several mechanosensing proteins have been identified, the series of mechanotransduction events resulting in local leukocyte recruitment is not understood. In a mouse model of arteriogenesis (femoral artery ligation), we found that endothelial cells release RNA in response to increased fluid shear stress and that administration of RNase inhibitor blocking plasma RNases improved perfusion recovery. In contrast, treatment with bovine pancreatic RNase A or human recombinant RNase1 interfered with leukocyte recruitment and collateral artery growth. Our results indicated that extracellular RNA (eRNA) regulated leukocyte recruitment by engaging vascular endothelial growth factor receptor 2 (VEGFR2), which was confirmed by intravital microscopic studies in a murine cremaster model of inflammation. Moreover, we found that release of von Willebrand factor (VWF) as a result of shear stress is dependent on VEGFR2. Blocking VEGFR2, RNase application, or VWF deficiency interfered with platelet-neutrophil aggregate formation, which is essential for initiating the inflammatory process in arteriogenesis. Taken together, the results show that eRNA is released from endothelial cells in response to shear stress. We demonstrate this extracellular nucleic acid as a critical mediator of mechanotransduction by inducing the liberation of VWF, thereby initiating the multistep inflammatory process responsible for arteriogenesis.


Assuntos
Células Endoteliais/metabolismo , Mecanotransdução Celular , Neovascularização Fisiológica , RNA/metabolismo , Estresse Mecânico , Animais , Artérias/fisiologia , Bovinos , Células Cultivadas , Células Endoteliais/citologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948041

RESUMO

Vascular occlusive diseases such myocardial infarction, peripheral artery disease of the lower extremities, or stroke still represent a substantial health burden worldwide [...].


Assuntos
Arteriopatias Oclusivas/diagnóstico , Neovascularização Patológica/diagnóstico , Neovascularização Fisiológica , Indutores da Angiogênese , Arteriopatias Oclusivas/genética , Arteriopatias Oclusivas/metabolismo , Circulação Sanguínea , Diagnóstico Precoce , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769229

RESUMO

Strain-related differences in arteriogenesis in inbred mouse strains have already been studied excessively. However, these analyses missed evaluating the mouse strain-related differences in ischemia-induced angiogenic capacities. With the present study, we wanted to shed light on the different angiogenic potentials and the associated leukocyte infiltration of C57BL/6J and SV-129 mice to facilitate the comparison of angiogenesis-related analyses between these strains. For the induction of angiogenesis, we ligated the femoral artery in 8-12-week-old male C57BL/6J and SV-129 mice and performed (immuno-) histological analyses on the ischemic gastrocnemius muscles collected 24 h or 7 days after ligation. As evidenced by hematoxylin and eosin staining, C57BL/6J mice showed reduced tissue damage but displayed an increased capillary-to-muscle fiber ratio and an elevated number of proliferating capillaries (CD31+/BrdU+ cells) compared to SV-129 mice, thus showing improved angiogenesis. Regarding the associated leukocyte infiltration, we found increased numbers of neutrophils (MPO+ cells), NETs (MPO+/CitH3+/DAPI+), and macrophages (CD68+ cells) in SV-129 mice, whereas macrophage polarization (MRC1- vs. MRC1+) and total leukocyte infiltration (CD45+ cells) did not differ between the mouse strains. In summary, we show increased ischemia-induced angiogenic capacities in C57BL/6J mice compared to SV-129 mice, with the latter showing aggravated tissue damage, inflammation, and impaired angiogenesis.


Assuntos
Membro Posterior , Isquemia/metabolismo , Macrófagos/metabolismo , Músculo Esquelético , Neovascularização Fisiológica , Neutrófilos/metabolismo , Animais , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Masculino , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Especificidade da Espécie
7.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071589

RESUMO

The complement system is a potent inflammatory trigger, activator, and chemoattractant for leukocytes, which play a crucial role in promoting angiogenesis. However, little information is available about the influence of the complement system on angiogenesis in ischemic muscle tissue. To address this topic and analyze the impact of the complement system on angiogenesis, we induced muscle ischemia in complement factor C3 deficient (C3-/-) and wildtype control mice by femoral artery ligation (FAL). At 24 h and 7 days after FAL, we isolated the ischemic gastrocnemius muscles and investigated them by means of (immuno-)histological analyses. C3-/- mice showed elevated ischemic damage 7 days after FAL, as evidenced by H&E staining. In addition, angiogenesis was increased in C3-/- mice, as demonstrated by increased capillary/muscle fiber ratio and increased proliferating endothelial cells (CD31+/BrdU+). Moreover, our results showed that the total number of leukocytes (CD45+) was increased in C3-/- mice, which was based on an increased number of neutrophils (MPO+), neutrophil extracellular trap formation (MPO+/CitH3+), and macrophages (CD68+) displaying a shift toward an anti-inflammatory and pro-angiogenic M2-like polarized phenotype (CD68+/MRC1+). In summary, we show that the deficiency of complement factor C3 increased neutrophil and M2-like polarized macrophage accumulation in ischemic muscle tissue, contributing to angiogenesis.


Assuntos
Capilares/fisiopatologia , Complemento C3/deficiência , Isquemia/fisiopatologia , Leucócitos/metabolismo , Músculo Esquelético/fisiopatologia , Animais , Capilares/metabolismo , Complemento C3/genética , Modelos Animais de Doenças , Imunofluorescência/métodos , Humanos , Isquemia/genética , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Infiltração de Neutrófilos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
8.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502391

RESUMO

Extracellular Cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released from cells upon hypoxia and cold-stress. The overall absence of extra- and intracellular CIRP is associated with increased angiogenesis, most likely induced through influencing leukocyte accumulation. The aim of the present study was to specifically characterize the role of eCIRP in ischemia-induced angiogenesis together with the associated leukocyte recruitment. For analyzing eCIRPs impact, we induced muscle ischemia via femoral artery ligation (FAL) in mice in the presence or absence of an anti-CIRP antibody and isolated the gastrocnemius muscle for immunohistological analyses. Upon eCIRP-depletion, mice showed increased capillary/muscle fiber ratio and numbers of proliferating endothelial cells (CD31+/CD45-/BrdU+). This was accompanied by a reduction of total leukocyte count (CD45+), neutrophils (MPO+), neutrophil extracellular traps (NETs) (MPO+CitH3+), apoptotic area (ascertained via TUNEL assay), and pro-inflammatory M1-like polarized macrophages (CD68+/MRC1-) in ischemic muscle tissue. Conversely, the number of regenerative M2-like polarized macrophages (CD68+/MRC1+) was elevated. Altogether, we observed that eCIRP depletion similarly affected angiogenesis and leukocyte recruitment as described for the overall absence of CIRP. Thus, we propose that eCIRP is mainly responsible for modulating angiogenesis via promoting pro-angiogenic microenvironmental conditions in muscle ischemia.


Assuntos
Isquemia/patologia , Neovascularização Fisiológica/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamação/patologia , Isquemia/metabolismo , Contagem de Leucócitos , Leucócitos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Músculos/metabolismo , Neutrófilos/metabolismo , Proteínas de Ligação a RNA/fisiologia
9.
FASEB J ; 33(4): 5457-5467, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702929

RESUMO

Tissue-resident mast cells (MCs) are well known for their role in inflammatory responses and allergic and anaphylactic reactions, but they also contribute to processes of arterial remodeling. Although ribosomes and cytosolic RNAs are located around secretory granules in mature MCs, their functional role in MC responses remains unexplored. Previous studies by our group characterized extracellular RNA (eRNA) as an inflammatory and pathogenetic factor in vitro and in vivo. In the present study, RNA-containing MCs and eRNA were located in close proximity to growing collateral arteries in vivo. In vitro, various agonists were found to induce the degranulation of MCs and the concomitant release of eRNA in association with microvesicles (MVs). The liberation of eRNA from MCs was abolished by MC stabilizers or by preventing the increase of intracellular Ca2+ in MCs. eRNA was found to be mainly contained inside MVs, as demonstrated by electron microscopy and immunocytochemistry. The exposure to and the uptake of MC-released MVs by cultured endothelial cells increased their expression of cytokines, such as monocyte chemoattractant protein or IL-6, in a dose- and time-dependent manner. These results indicate that RNA-containing MC-derived MVs are likely to be involved in inflammatory responses, relevant, for example, to processes of vascular remodeling.-Elsemüller, A.-K., Tomalla, V., Gärtner, U., Troidl, K., Jeratsch, S., Graumann, J., Baal, N., Hackstein, H., Lasch, M., Deindl, E., Preissner, K. T., Fischer, S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Mastócitos/metabolismo , Microvasos/metabolismo , RNA Ribossômico/metabolismo , Animais , Degranulação Celular/fisiologia , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vesículas Secretórias/metabolismo
10.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466112

RESUMO

This Special Issue enqueues a series of publications dealing with arteriogenesis, which is the growth of a natural bypass from pre-existing arteriolar connections, as defined by Wolfgang Schaper, Werner Risau and Ramon Munoz-Chapuli in the late nineties of the last century [...].


Assuntos
Neovascularização Fisiológica , Animais , Artérias/metabolismo , Artérias/fisiologia , Humanos
11.
Int J Mol Sci ; 21(10)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438752

RESUMO

Arteriogenesis, the growth of a natural bypass from pre-existing arteriolar collaterals, is an endogenous mechanism to compensate for the loss of an artery. Mechanistically, this process relies on a locally and temporally restricted perivascular infiltration of leukocyte subpopulations, which mediate arteriogenesis by supplying growth factors and cytokines. Currently, the state-of-the-art method to identify and quantify these leukocyte subpopulations in mouse models is immunohistology. However, this is a time consuming procedure. Here, we aimed to develop an optimized protocol to identify and quantify leukocyte subpopulations by means of flow cytometry in adductor muscles containing growing collateral arteries. For that purpose, adductor muscles of murine hindlimbs were isolated at day one and three after induction of arteriogenesis, enzymatically digested, and infiltrated leukocyte subpopulations were identified and quantified by flow cytometry, as exemplary shown for neutrophils and macrophages (defined as CD45+/CD11b+/Ly6G+ and CD45+/CD11b+/F4/80+ cells, respectively). In summary, we show that flow cytometry is a suitable method to identify and quantify leukocyte subpopulations in muscle tissue, and provide a detailed protocol. Flow cytometry constitutes a timesaving tool compared to histology, which might be used in addition for precise localization of leukocytes in tissue samples.


Assuntos
Citometria de Fluxo/métodos , Leucócitos/patologia , Doença Arterial Periférica/diagnóstico , Animais , Modelos Animais de Doenças , Membro Posterior/patologia , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL
12.
Int Immunol ; 30(2): 79-89, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29329391

RESUMO

A prolonged stress burden is known to hamper the efficiency of both the innate and the adaptive immune systems and to attenuate the stress responses by the catecholaminergic and endocannabinoid (EC) systems. Key mechanisms of innate immunity are the eradication of pathogens through phagocytosis and the respiratory burst. We tested the concentration-dependent, spontaneous and stimulated (via TNFα and N-formylmethionine-leucyl-phenylalanine) release of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs) in vitro in response to norepinephrine (NE) and AM1241, a pharmacological ligand for the EC receptor CB2. We evaluated phagocytosis of Dectin-1 ligating zymosan particles and tested the cytokine response against Candida antigen in an in vitro cytokine release assay. Increasing concentrations of NE did not affect phagocytosis, yet stimulated ROS release was attenuated gradually reaching maximum suppression at 500 nM. Adrenergic receptor (AR) mechanisms using non-AR-selective (labetalol) as well as specific α-(prazosin) and ß-(propranolol) receptor antagonists were tested. Results show that only labetalol and propranolol were able to recuperate cytotoxicity in the presence of NE, evidencing a ß-receptor-mediated effect. The CB2 agonist, AM1241, inhibited phagocytosis at 10 µM and spontaneous peroxide release by PMNs. Use of the inverse CB2 receptor agonist SR144528 led to partial recuperation of ROS production, confirming the functional role of CB2. Additionally, AM1241 delayed early activation of monocytes and induced suppression of IL-2 and IL-6 levels in response to Candida via lower activity of mammalian target of rapamycin (mTOR). These findings provide new insights into key mechanisms of innate immunity under stressful conditions where ligands to the sympatho-adrenergic and EC system are released.


Assuntos
Endocanabinoides/farmacologia , Lectinas Tipo C/genética , Norepinefrina/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Explosão Respiratória/imunologia , Adulto , Biomarcadores , Citocinas/metabolismo , Fungos/imunologia , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Granulócitos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Micoses/imunologia , Micoses/metabolismo , Micoses/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Adulto Jovem
13.
Mol Cell Biochem ; 453(1-2): 41-51, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30128948

RESUMO

Changes in wall shear stress of blood vessels are assumed to be an important component of many physiological and pathophysiological processes. However, due to technical limitations experimental in vivo data are rarely available. Here, we investigated two-photon excitation fluorescence microscopy as an option to measure vessel diameter as well as blood flow velocities in a murine hindlimb model of arteriogenesis (collateral artery growth). Using line scanning at high frequencies, we measured the movement of blood cells along the vessel axis. We found that peak systolic blood flow velocity averaged 9 mm/s and vessel diameter 42 µm in resting collaterals. Induction of arteriogenesis by femoral artery ligation resulted in a significant increase in centerline peak systolic velocity after 1 day with an average of 51 mm/s, whereas the averaged luminal diameter of collaterals (52 µm) changed much less. Thereof calculations revealed a significant fourfold increase in hemodynamic wall shear rate. Our results indicate that two-photon line scanning is a suitable tool to estimate wall shear stress e.g., in experimental animal models, such as of arteriogenesis, which may not only help to understand the relevance of mechanical forces in vivo, but also to adjust wall shear stress in ex vivo investigations on isolated vessels as well as cell culture experiments.


Assuntos
Artérias/diagnóstico por imagem , Artérias/fisiopatologia , Modelos Cardiovasculares , Resistência ao Cisalhamento , Animais , Velocidade do Fluxo Sanguíneo , Masculino , Camundongos
14.
Int J Mol Sci ; 20(24)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817879

RESUMO

Arteriogenesis is an intricate process in which increased shear stress in pre-existing arteriolar collaterals induces blood vessel expansion, mediated via endothelial cell activation, leukocyte recruitment and subsequent endothelial and smooth muscle cell proliferation. Extracellular RNA (eRNA), released from stressed cells or damaged tissue under pathological conditions, has recently been discovered to be liberated from endothelial cells in response to increased shear stress and to promote collateral growth. Until now, eRNA has been shown to enhance coagulation and inflammation by inducing cytokine release, leukocyte recruitment, and endothelial permeability, the latter being mediated by vascular endothelial growth factor (VEGF) signaling. In the context of arteriogenesis, however, eRNA has emerged as a transmitter of shear stress into endothelial activation, mediating the sterile inflammatory process essential for collateral remodeling, whereby the stimulatory effects of eRNA on the VEGF signaling axis seem to be pivotal. In addition, eRNA might influence subsequent steps of the arteriogenesis cascade as well. This article provides a comprehensive overview of the beneficial effects of eRNA during arteriogenesis, laying the foundation for further exploration of the connection between the damaging and non-damaging effects of eRNA in the context of cardiovascular occlusive diseases and of sterile inflammation.


Assuntos
Artérias/crescimento & desenvolvimento , Células Endoteliais/citologia , Miócitos de Músculo Liso/citologia , Neovascularização Fisiológica , RNA/metabolismo , Animais , Artérias/metabolismo , Células Endoteliais/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , RNA/genética , Transdução de Sinais
15.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284541

RESUMO

The process of arteriogenesis is severely compromised in patients with diabetes mellitus (DM). Earlier studies have reported the importance of Egr-1 in promoting collateral outward remodeling. However, the role of Egr-1 in the presence of DM in outward vessel remodeling was not studied. We hypothesized that Egr-1 expression may be compromised in DM which may lead to impaired collateral vessel growth. Here, we investigated the relevance of the transcription factor Egr-1 for the process of collateral artery growth in diabetic mice. Induction of arteriogenesis by femoral artery ligation resulted in an increased expression of Egr-1 on mRNA and protein level but was severely compromised in streptozotocin-induced diabetic mice. Diabetes mellitus mice showed a significantly reduced expression of Egr-1 endothelial downstream genes Intercellular Adhesion Molecule-1 (ICAM-1) and urokinase Plasminogen Activator (uPA), relevant for extravasation of leukocytes which promote arteriogenesis. Fluorescent-activated cell sorting analyses confirmed reduced leukocyte recruitment. Diabetes mellitus mice showed a reduced expression of the proliferation marker Ki-67 in growing collaterals whose luminal diameters were also reduced. The Splicing Factor-1 (SF-1), which is critical for smooth muscle cell proliferation and phenotype switch, was found to be elevated in collaterals of DM mice. Treatment of DM mice with insulin normalized the expression of Egr-1 and its downstream targets and restored leukocyte recruitment. SF-1 expression and the diameter of growing collaterals were normalized by insulin treatment as well. In summary, our results showed that Egr-1 signaling was impaired in DM mice; however, it can be rescued by insulin treatment.


Assuntos
Diabetes Mellitus Experimental/patologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Artéria Femoral/crescimento & desenvolvimento , Insulinas/farmacologia , Morfogênese/efeitos dos fármacos , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Circulação Colateral/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Artéria Femoral/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158425

RESUMO

Mechanical forces in blood circulation such as shear stress play a predominant role in many physiological and pathophysiological processes related to vascular responses or vessel remodeling. Arteriogenesis, defined as the growth of pre-existing arterioles into functional collateral arteries compensating for stenosed or occluded arteries, is such a process. Midkine, a pleiotropic protein and growth factor, has originally been identified to orchestrate embryonic development. In the adult organism its expression is restricted to distinct tissues (including tumors), whereby midkine is strongly expressed in inflamed tissue and has been shown to promote inflammation. Recent investigations conferred midkine an important function in vascular remodeling and growth. In this review, we introduce the midkine gene and protein along with its cognate receptors, and highlight its role in inflammation and the vascular system with special emphasis on arteriogenesis, particularly focusing on shear stress-mediated vascular cell proliferation and vasodilatation.


Assuntos
Células Endoteliais/metabolismo , Midkina/metabolismo , Vasodilatação/fisiologia , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Indóis/farmacologia , Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Óxido Nítrico Sintase/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Resistência ao Cisalhamento/efeitos dos fármacos , Estresse Mecânico , Vasodilatação/genética
17.
Arterioscler Thromb Vasc Biol ; 36(9): 1891-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27386940

RESUMO

OBJECTIVE: Although the investigation on the importance of mitochondria-derived reactive oxygen species (ROS) in endothelial function has been gaining momentum, little is known on the precise role of the individual components involved in the maintenance of a delicate ROS balance. Here we studied the impact of an ongoing dysregulated redox homeostasis by examining the effects of endothelial cell-specific deletion of murine thioredoxin reductase 2 (Txnrd2), a key enzyme of mitochondrial redox control. APPROACH AND RESULTS: We analyzed the impact of an inducible, endothelial cell-specific deletion of Txnrd2 on vascular remodeling in the adult mouse after femoral artery ligation. Laser Doppler analysis and histology revealed impaired angiogenesis and arteriogenesis. In addition, endothelial loss of Txnrd2 resulted in a prothrombotic, proinflammatory vascular phenotype, manifested as intravascular cellular deposits, as well as microthrombi. This phenotype was confirmed by an increased leukocyte response toward interleukin-1 in the mouse cremaster model. In vitro, we could confirm the attenuated angiogenesis measured in vivo, which was accompanied by increased ROS and an impaired mitochondrial membrane potential. Ex vivo analysis of femoral arteries revealed reduced flow-dependent vasodilation in endothelial cell Txnrd2-deficient mice. This endothelial dysfunction could be, at least partly, ascribed to inadequate nitric oxide signaling. CONCLUSIONS: We conclude that the maintenance of mitochondrial ROS via Txnrd2 in endothelial cells is necessary for an intact vascular homeostasis and remodeling and that Txnrd2 plays a vitally important role in balancing mitochondrial ROS production in the endothelium.


Assuntos
Endotélio Vascular/enzimologia , Artéria Femoral/enzimologia , Inflamação/enzimologia , Isquemia/enzimologia , Mitocôndrias/enzimologia , Tiorredoxina Redutase 2/deficiência , Trombose/enzimologia , Remodelação Vascular , Vasodilatação , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/enzimologia , Células Progenitoras Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Artéria Femoral/cirurgia , Predisposição Genética para Doença , Inflamação/genética , Inflamação/patologia , Inflamação/fisiopatologia , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Ligadura , Potencial da Membrana Mitocondrial , Camundongos Knockout , Mitocôndrias/patologia , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Oxirredução , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tiorredoxina Redutase 2/genética , Trombose/genética , Trombose/patologia , Trombose/fisiopatologia , Fatores de Tempo
18.
Lab Invest ; 96(8): 830-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27239731

RESUMO

l-Arginine is the common substrate for nitric oxide synthases (NOS) and arginase. Whereas the contribution of NOS to collateral artery growth (arteriogenesis) has been demonstrated, the functional role of arginase remains to be elucidated and was topic of the present study. Arteriogenesis was induced in mice by ligation of the femoral artery. Laser Doppler perfusion measurements demonstrated a significant reduction in arteriogenesis in mice treated with the arginase inhibitor nor-NOHA (N(ω)-hydroxy-nor-arginine). Accompanying in vitro results on murine primary arterial endothelial cells and smooth muscle cells revealed that nor-NOHA treatment interfered with cell proliferation and resulted in increased nitrate/nitrite levels, indicative for increased NO production. Immuno-histological analyses on tissue samples demonstrated that nor-NOHA administration caused a significant reduction in M2 macrophage accumulation around growing collateral arteries. Gene expression studies on isolated growing collaterals evidenced that nor-NOHA treatment abolished the differential expression of Icam1 (intercellular adhesion molecule 1). From our data we conclude that arginase activity is essential for arteriogenesis by promoting perivascular M2 macrophage accumulation as well as arterial cell proliferation.


Assuntos
Arginase/antagonistas & inibidores , Circulação Colateral/efeitos dos fármacos , Circulação Colateral/fisiologia , Macrófagos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Arginase/fisiologia , Arginina/análogos & derivados , Arginina/farmacologia , Artérias/efeitos dos fármacos , Artérias/crescimento & desenvolvimento , Artérias/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Circulação Colateral/genética , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/biossíntese
19.
Blood ; 123(12): 1887-96, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24458438

RESUMO

Emerging evidence suggests a role of the cytokine midkine (MK) in inflammation. In this study, its functional relevance for recruitment of polymorphonuclear neutrophils (PMNs) during acute inflammation was investigated. Intravital microscopy and histologic analysis of tumor necrosis factor-α-stimulated cremaster muscle venules revealed severely compromised leukocyte adhesion and extravasation in MK(-/-) mice compared with MK(+/+) animals. Systemic administration of recombinant MK completely rescued the adhesion defect in MK(-/-) mice. In a hind limb ischemia model, leukocyte accumulation in MK(-/-) mice was significantly diminished compared with MK(+/+) animals. However, MK did not lead to an inflammatory activation of PMNs or endothelial cells suggesting that it does not serve as classical proinflammatory cytokine. Unexpectedly, immobilized MK mediated PMN adhesion under static and flow conditions, whereas PMN-derived MK was dispensable for the induction of adhesion. Furthermore, adhesion strengthening remained unaffected by MK. Flow cytometry revealed that immobilized, but not soluble MK, significantly promoted the high affinity conformation of ß2 integrins of PMNs. Blocking studies of low-density lipoprotein receptor-related protein 1 (LRP1) suggested that LRP1 may act as a receptor for MK on PMNs. Thus, MK seems to support PMN adhesion by promoting the high affinity conformation of ß2 integrins, thereby facilitating PMN trafficking during acute inflammation.


Assuntos
Antígenos CD18/fisiologia , Inflamação/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neutrófilos/fisiologia , Animais , Antígenos CD11/fisiologia , Antígenos CD18/genética , Adesão Celular/imunologia , Adesão Celular/fisiologia , Citocinas/imunologia , Citocinas/fisiologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Midkina , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Fatores de Crescimento Neural/fisiologia , Neutrófilos/imunologia , Neutrófilos/patologia , Receptores de LDL/imunologia , Receptores de LDL/fisiologia , Proteínas Supressoras de Tumor/imunologia , Proteínas Supressoras de Tumor/fisiologia
20.
Arterioscler Thromb Vasc Biol ; 35(3): 589-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25550202

RESUMO

OBJECTIVE: Arteriogenesis is strongly dependent on the recruitment of leukocytes, especially monocytes, into the perivascular space of growing collateral vessels. On the basis of previous findings that platelets are central players in inflammatory processes and mediate the recruitment of leukocytes, the aim of this study was to assess the role of platelets in a model of arterial remodeling. APPROACH AND RESULTS: C57Bl6 wild-type mice, IL4-R/Iba mice lacking the extracellular domain of the glycoprotein Ibα (GPIbα) receptor, and mice treated with antibodies to block GPIbα or deplete circulating platelets were studied in peripheral arteriogenesis. Using a novel model of intravital 2-photon and epifluorescence imaging, we visualized and quantified the interaction of platelets with leukocytes and the vascular endothelium in vivo. We found that transient platelet adhesion to the endothelium of collateral vessels was a major event during arteriogenesis and depended on GPIbα. Furthermore, leukocyte recruitment was obviously affected in animals with defective platelet GPIbα function. In IL4-R/Iba mice, transient and firm leukocyte adhesion to the endothelium of collateral vessels, as well as leukocyte accumulation in the perivascular space, were significantly reduced. Furthermore, we detected platelet-leukocyte aggregates within the circulation, which were significantly reduced in IL4-R/Iba animals. Finally, platelet depletion and loss of GPIbα function resulted in poor reperfusion recovery as determined by laser Doppler imaging. CONCLUSIONS: Thus, GPIbα-mediated interactions between platelets and endothelial cells, as well as leukocytes, support innate immune cell recruitment and promote arteriogenesis-establishing platelets as critical players in this process.


Assuntos
Neovascularização Fisiológica , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA