Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; : e14368, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225250

RESUMO

Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km2). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.


Planeación tridimensional de la conservación de las medidas de biodiversidad de peces para lograr el objetivo de conservación 30x30 de mar profundo Resumen El impacto antropogénico y el cambio ambiental acelerados afectan gravemente a la biodiversidad marina y aumentan la urgencia de aplicar el plan 30x30 del Convenio sobre la Diversidad Biológica (CDB) para conservar el 30% de las zonas marinas para el 2030. Sin embargo, la identificación de objetivos de conservación basados en zonas es compleja en un océano tridimensional (3D) en el que rara vez se han estudiado las características de las profundidades marinas, como los montes marinos, sobre todo por la dificultad de aplicar metodologías a grandes profundidades. No obstante, el uso de tecnologías emergentes, como el ADN ambiental combinado con marcos actuales de modelación, podría ayudar a resolver el problema. Recopilamos datos de ADN ambiental, acústica de ecosonda y video en 15 montes marinos y taludes de islas profundas del mar del Coral. Modelamos siete medidas de comunidades de peces y 45 abundancias de especies individuales y unidades taxonómicas moleculares (UTOM) en aguas bentónicas y pelágicas (hasta 600 m de profundidad) con árboles de regresión reforzada (ARR) y modelos de atributos conjuntos generalizados (MACJ) para describir la biodiversidad en los montes marinos y taludes profundos e identificar soluciones de protección en 3D para alcanzar el objetivo de área del CDB en Nueva Caledonia (1.4 millones de km2). Priorizamos las unidades de conservación identificadas en un espacio 3D con base en varios objetivos de biodiversidad para cumplir el objetivo de proteger al menos el 30% del dominio espacial con un enfoque en las zonas con una gran biodiversidad. La relación entre los objetivos de protección de la biodiversidad y el área espacial protegida por la solución fue lineal. El escenario que protegía el 30% de cada medida de biodiversidad preservó casi el 30% del dominio espacial considerado y consideró la distribución tridimensional de la biodiversidad. Nuestro estudio prepara el camino para el uso de metodologías combinadas de recopilación de datos con el fin de mejorar las estimaciones de biodiversidad en entornos marinos estructurados en 3D para la selección de áreas de conservación y para el uso de objetivos de biodiversidad con el fin de alcanzar objetivos internacionales basados en áreas.

2.
Proc Biol Sci ; 290(2006): 20231130, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700645

RESUMO

Understanding how anthropization impacts the assembly of species onto communities is pivotal to go beyond the observation of biodiversity changes and reveal how disturbances affect the environmental and biotic processes shaping biodiversity. Here, we propose a simple framework to measure the assembly processes underpinning functional convergence/divergence patterns. We applied this framework to northern Amazonian fish communities inventoried using environmental DNA in 35 stream sites and 64 river sites. We found that the harsh and unstable environmental conditions characterizing streams conveyed communities towards functional convergence, by filtering traits related to food acquisition and, to a lower extent, dispersal. Such environmental filtering also strengthened competition by excluding species having less competitive food acquisition traits. Instead, random species assembly was more marked in river communities, which may be explained by the downstream position of rivers facilitating the dispersion of species. Although fish assembly rules differed between streams and river fish communities, anthropogenic disturbances reduced functional divergence in both ecosystems, with a reinforcement of both environmental filtering and weaker competitor exclusion. This may explain the substantial biodiversity alterations observed under slight deforestation levels in Neotropical freshwater ecosystems and underlines their vulnerability to anthropic disturbances that not only affect species persistence but also modify community assembly rules.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Rios , Água Doce , Efeitos Antropogênicos
3.
Glob Chang Biol ; 29(7): 1741-1758, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36408670

RESUMO

Freshwater ecosystems are among the most endangered ecosystem in the world. Understanding how human activities affect these ecosystems requires disentangling and quantifying the contribution of the factors driving community assembly. While it has been largely studied in temperate freshwaters, tropical ecosystems remain challenging to study due to the high species richness and the lack of knowledge on species distribution. Here, the use of eDNA-based fish inventories combined to a community-level modelling approach allowed depicting of assembly rules and quantifying the relative contribution of geographic, environmental and anthropic factors to fish assembly. We then used the model predictions to map spatial biodiversity and assess the representativity of sites surveyed in French Guiana within the EU Water Framework Directive (WFD) and highlighted areas that should host unique freshwater fish assemblages. We demonstrated a mismatch between the taxonomic and functional diversity. Taxonomic assemblages between but also within basins were mainly the results of dispersal limitation resulting from basin isolation and natural river barriers. Contrastingly, functional assemblages were ruled by environmental and anthropic factors. The regional mapping of fish diversity indicated that the sites surveyed within the EU WFD had a better representativity of the regional functional diversity than taxonomic diversity. Importantly, we also showed that the assemblages expected to be the most altered by anthropic factors were the most poorly represented in terms of functional diversity in the surveyed sites. The predictions of unique functional and taxonomic assemblages could, therefore, guide the establishment of new survey sites to increase fish diversity representativity and improve this monitoring program.


Assuntos
DNA Ambiental , Ecossistema , Animais , Humanos , Efeitos Antropogênicos , Biodiversidade , Peixes/fisiologia , Monitoramento Ambiental
4.
Proc Biol Sci ; 289(1973): 20220162, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35440210

RESUMO

Increasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems. We analysed 226 environmental DNA (eDNA) seawater samples from 100 stations in five tropical regions (Caribbean, Central and Southwest Pacific, Coral Triangle and Western Indian Ocean) and compared those to 2047 underwater visual censuses from the Reef Life Survey in 1224 stations. Environmental DNA reveals a higher (16%) fish biodiversity, with 2650 taxa, and 25% more families than underwater visual surveys. By identifying more pelagic, reef-associated and crypto-benthic species, eDNA offers a fresh view on assembly rules across spatial scales. Nevertheless, the reef life survey identified more species than eDNA in 47 shared families, which can be due to incomplete sequence assignment, possibly combined with incomplete detection in the environment, for some species. Combining eDNA metabarcoding and extensive visual census offers novel insights on the spatial organization of the richest marine ecosystems.


Assuntos
Recifes de Corais , DNA Ambiental , Animais , Biodiversidade , Ecossistema , Peixes , Humanos
5.
Proc Biol Sci ; 288(1949): 20210112, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33906403

RESUMO

Although we are currently experiencing worldwide biodiversity loss, local species richness does not always decline under anthropogenic pressure. This conservation paradox may also apply in protected areas but has not yet received conclusive evidence in marine ecosystems. Here, we survey fish assemblages in six Mediterranean no-take reserves and their adjacent fishing grounds using environmental DNA (eDNA) while controlling for environmental conditions. We detect less fish species in marine reserves than in nearby fished areas. The paradoxical gradient in species richness is accompanied by a marked change in fish species composition under different managements. This dissimilarity is mainly driven by species that are often overlooked by classical visual surveys but detected with eDNA: cryptobenthic, pelagic, and rare fishes. These results do not negate the importance of reserves in protecting biodiversity but shed new light on how under-represented species groups can positively react to fishing pressure and how conservation efforts can shape regional biodiversity patterns.


Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Conservação dos Recursos Naturais , Código de Barras de DNA Taxonômico , Peixes/genética
6.
Mol Ecol ; 30(13): 3189-3202, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32920861

RESUMO

Metabarcoding of bulk or environmental DNA has great potential for biomonitoring of freshwater environments. However, successful application of metabarcoding to biodiversity monitoring requires universal primers with high taxonomic coverage that amplify highly variable, short metabarcodes with high taxonomic resolution. Moreover, reliable and extensive reference databases are essential to match the outcome of metabarcoding analyses with available taxonomy and biomonitoring indices. Benthic invertebrates, particularly insects, are key taxa for freshwater bioassessment. Nevertheless, few studies have so far assessed markers for metabarcoding of freshwater macrobenthos. Here we combined in silico and laboratory analyses to test the performance of different markers amplifying regions in the 18S rDNA (Euka02), 16S rDNA (Inse01) and COI (BF1_BR2-COI) genes, and developed an extensive database of benthic macroinvertebrates of France and Europe, with a particular focus on key insect orders (Ephemeroptera, Plecoptera and Trichoptera). Analyses on 1,514 individuals representing different taxa of benthic macroinvertebrates showed very different amplification success across primer combinations. The Euka02 marker showed the highest universality, while the Inse01 marker showed excellent performance for the amplification of insects. BF1_BR2-COI showed the highest resolution, while the resolution of Euka02 was often limited. By combining our data with GenBank information, we developed a curated database including sequences representing 822 genera. The heterogeneous performance of the different primers highlights the complexity in identifying the best markers, and advocates for the integration of multiple metabarcodes for a more comprehensive and accurate understanding of ecological impacts on freshwater biodiversity.


Assuntos
Código de Barras de DNA Taxonômico , Água Doce , Animais , Biodiversidade , Europa (Continente) , França , Humanos
7.
Mol Ecol ; 30(13): 3289-3298, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32786119

RESUMO

Declines and extinctions are increasing globally and challenge conservationists to keep pace with biodiversity monitoring. Organisms leave DNA traces in the environment, e.g., in soil, water, and air. These DNA traces are referred to as environmental DNA (eDNA). The analysis of eDNA is a highly sensitive method with the potential to rapidly assess local diversity and the status of threatened species. We searched for DNA traces of 30 target amphibian species of conservation concern, at different levels of threat, using an environmental DNA metabarcoding approach, together with an extensive sequence reference database to analyse water samples from six montane sites in the Atlantic Coastal Forest and adjacent Cerrado grasslands of Brazil. We successfully detected DNA traces of four declined species (Hylodes ornatus, Hylodes regius, Crossodactylus timbuhy, and Vitreorana eurygnatha); two locally disappeared (Phasmahyla exilis and Phasmahyla guttata); and one species that has not been seen since 1968 (putatively assigned to Megaelosia bocainensis). We confirm the presence of species undetected by traditional methods, underscoring the efficacy of eDNA metabarcoding for biodiversity monitoring at low population densities, especially in megadiverse tropical sites. Our results support the potential application of eDNA in conservation biology, to evaluate persistence and distribution of threatened species in surveyed habitats or sites, and improve accuracy of red lists, especially for species undetected over long periods.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Brasil , Código de Barras de DNA Taxonômico , Monitoramento Ambiental
8.
Mol Ecol ; 30(13): 3203-3220, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33150613

RESUMO

Macroinvertebrate assemblages are the most common bioindicators used for stream biomonitoring, yet the standard approach exhibits several time-consuming steps, including the sorting and identification of organisms based on morphological criteria. In this study, we examined if DNA metabarcoding could be used as an efficient molecular-based alternative to the morphology-based monitoring of streams using macroinvertebrates. We compared results achieved with the standard morphological identification of organisms sampled in 18 sites located on 15 French wadeable streams to results obtained with the DNA metabarcoding identification of sorted bulk material of the same macroinvertebrate samples, using read numbers (expressed as relative frequencies) as a proxy for abundances. In particular, we evaluated how combining and filtering metabarcoding data obtained from three different markers (COI: BF1-BR2, 18S: Euka02 and 16S: Inse01) could improve the efficiency of bioassessment. In total, 140 taxa were identified based on morphological criteria, and 127 were identified based on DNA metabarcoding using the three markers, with an overlap of 99 taxa. The threshold values used for sequence filtering based on the "best identity" criterion and the number of reads had an effect on the assessment efficiency of data obtained with each marker. Compared to single marker results, combining data from different markers allowed us to improve the match between biotic index values obtained with the bulk DNA versus morphology-based approaches. Both approaches assigned the same ecological quality class to a majority (86%) of the site sampling events, highlighting both the efficiency of metabarcoding as a biomonitoring tool but also the need for further research to improve this efficiency.


Assuntos
Código de Barras de DNA Taxonômico , Rios , Animais , Biodiversidade , DNA/genética , Monitoramento Ambiental , Invertebrados/genética
9.
Conserv Biol ; 35(6): 1944-1956, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224158

RESUMO

Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species' phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.


Uso de ADN Ambiental en la Evaluación de la Diversidad Funcional y Filogenética de los Peces Resumen La evaluación del impacto de los cambios globales y la efectividad de la protección es un paso fundamental para el monitoreo de peces marinos. La mayoría de los métodos tradicionales de censos son demandantes o destructivos, por lo que las estrategias no letales y no intrusivas basadas en videograbaciones y en el ADN ambiental (ADNa) son alternativas a los censos visuales submarinos y a la pesca. Sin embargo, todavía no se conoce la habilidad que tienen estos métodos para detectar diferentes factores de la biodiversidad más allá de la diversidad taxonómica. Para los peces óseos y los elasmobranquios, comparamos el desempeño de la caracterización genética con ADNa y del video remoto de larga duración para evaluar la diversidad funcional y filogenética de las especies. Usamos diez muestras de ADNa tomadas de 30 litros de agua cada una y 25 horas de vídeos submarinos grabados durante cuatro días en la Isla Malpelo (costa del Pacífico de Colombia), un área marina protegida remota. La caracterización genética con el ADNa detectó 66% más unidades taxonómicas moleculares operacionales (UTMOs) que el video. Encontramos 66 y 43 entidades funcionales con un solo marcador de ADNa y con el video, respectivamente, y una riqueza funcional más alta para el ADNa que el video. A pesar de los vacíos en las bases de datos genéticos usadas como referencia, el ADNa también detectó una diversidad filogenética más alta que aquella en los videos; las curvas de acumulación mostraron cómo un solo transecto de ADNa detectó tanta diversidad filogenética como 25 horas de video. La caracterización genética con ADN ambiental puede usarse para censar los factores de biodiversidad de manera asequible, eficiente y certera en los sistemas marinos. Aunque las atribuciones taxonómicas todavía están limitadas por la cobertura de especies en las bases de datos genéticos de referencia, el uso de los UTMOs resalta el potencial que tiene la caracterización genética con ADNa una vez que las bases de datos de referencia sean expandidas.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Conservação dos Recursos Naturais , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Peixes/genética , Caça , Filogenia
10.
J Fish Biol ; 98(2): 387-398, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31674010

RESUMO

As fish communities are a major concern in rivers ecosystems, we investigated if their environmental (e)DNA signals vary according to the sampling period or hydromorphological conditions. Three rivers were studied over a year using eDNA metabarcoding approach. The majority of the species (c. 80%) were detected all year round in two rivers having similar hydromorphological conditions, whereas in the river affected by an upstream lake waterflow, more species were detected sporadically (42%). For all the rivers, in more than 98% of the occasional detections, the reads abundance represented <0.4% of the total reads per site and per sampling session. Even if the majority of the fish communities remained similar over the year for each of the three rivers, specific seasonal patterns were observed. We studied if the waterflow or the reproduction period had an effect on the observed dynamics. Waterflow, which influences eDNA downstream transportation, had a global influence in taxonomic richness, while the fishes' reproductive period had only an influence on certain species. Our results may help selecting the best sampling strategy according to research objectives. To study fish communities at local scale, seasons of low waterflow periods are recommended. This particularly helps to restraint effects of external eDNA coming from connections with other aquatic environment (tributaries, lakes, wetlands, sewage effluents, etc.). To obtain a more integrative overview of the fish community living in a river basin, high waterflow or breeding seasons are preferable for enhancing species detection probability, especially for rare species.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/análise , Monitoramento Ambiental/métodos , Peixes/genética , Estações do Ano , Animais , DNA Ambiental/genética , Ecossistema , Dinâmica Populacional , Rios , Manejo de Espécimes
11.
J Fish Biol ; 98(2): 354-366, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31644817

RESUMO

Most of the present EU Water Framework Directive (WFD) compliant fish-based assessment methods of European rivers are multi-metric indices computed from traditional electrofishing (TEF) samples, but this method has known shortcomings, especially in large rivers. The probability of detecting rare species remains limited, which can alter the sensitivity of the indices. In recent years, environmental (e)DNA metabarcoding techniques have progressed sufficiently to allow applications in various ecological domains as well as eDNA-based ecological assessment methods. A review of the 25 current WFD-compliant methods for river fish shows that 81% of the metrics used in these methods are expressed in richness or relative abundance and thus compatible with eDNA samples. However, more than half of the member states' methods include at least one metric related to age or size structure and would have to adapt their current fish index if reliant solely on eDNA-derived information. Most trait-based metrics expressed in richness are higher when computed from eDNA than when computed from TEF samples. Comparable values are obtained only when the TEF sampling effort increases. Depending on the species trait considered, most trait-based metrics expressed in relative abundance are significantly higher for eDNA than for TEF samples or vice versa due to over-estimation of sub-surface species or under-estimation of benthic and rare species by TEF sampling, respectively. An existing predictive fish index, adapted to make it compatible with eDNA data, delivers an ecological assessment comparable with the current approved method for 22 of the 25 sites tested. Its associated uncertainty is lower than that of current fish indices. Recommendations for the development of future fish eDNA-based indices and the associated eDNA water sampling strategy are discussed.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , Peixes/genética , Rios/química , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/normas , Código de Barras de DNA Taxonômico/tendências , Ecossistema , Monitoramento Ambiental/métodos , União Europeia
12.
Proc Biol Sci ; 287(1930): 20200248, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635874

RESUMO

Environmental DNA (eDNA) has the potential to provide more comprehensive biodiversity assessments, particularly for vertebrates in species-rich regions. However, this method requires the completeness of a reference database (i.e. a list of DNA sequences attached to each species), which is not currently achieved for many taxa and ecosystems. As an alternative, a range of operational taxonomic units (OTUs) can be extracted from eDNA metabarcoding. However, the extent to which the diversity of OTUs provided by a limited eDNA sampling effort can predict regional species diversity is unknown. Here, by modelling OTU accumulation curves of eDNA seawater samples across the Coral Triangle, we obtained an asymptote reaching 1531 fish OTUs, while 1611 fish species are recorded in the region. We also accurately predict (R² = 0.92) the distribution of species richness among fish families from OTU-based asymptotes. Thus, the multi-model framework of OTU accumulation curves extends the use of eDNA metabarcoding in ecology, biogeography and conservation.


Assuntos
Biodiversidade , DNA Ambiental , Monitoramento Ambiental , Peixes , Animais , Antozoários , Código de Barras de DNA Taxonômico , Ecologia , Ecossistema , Água do Mar
13.
Mol Ecol ; 25(4): 929-42, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26479867

RESUMO

Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.


Assuntos
Anfíbios/classificação , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Peixes/classificação , Anfíbios/genética , Animais , Primers do DNA , DNA Mitocondrial/genética , Ecossistema , Monitoramento Ambiental , Peixes/genética , Água Doce , Oceanos e Mares
14.
Ecol Evol ; 14(5): e11337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766310

RESUMO

Islands have been used as model systems to study ecological and evolutionary processes, and they provide an ideal set-up for validating new biodiversity monitoring methods. The application of environmental DNA metabarcoding for monitoring marine biodiversity requires an understanding of the spatial scale of the eDNA signal, which is best tested in island systems. Here, we investigated the variation in Actinopterygii and Elasmobranchii species composition recovered from eDNA metabarcoding along a gradient of distance-to-reef in four of the five French Scattered Islands in the Western Indian Ocean. We collected surface water samples at an increasing distance from reefs (0 m, 250 m, 500 m, 750 m). We used a metabarcoding protocol based on the 'teleo' primers to target marine reef fishes and classified taxa according to their habitat types (benthic or pelagic). We investigated the effect of distance-to-reef on ß diversity variation using generalised linear mixed models and estimated species-specific distance-to-reef effects using a model-based approach for community data. Environmental DNA metabarcoding analyses recovered distinct fish species compositions across the four inventoried islands and variations along the distance-to-reef gradient. The analysis of ß-diversity variation showed significant taxa turnover between the eDNA samples on and away from the reefs. In agreement with a spatially localised signal from eDNA, benthic species were distributed closer to the reef than pelagic ones. Our findings demonstrate that the combination of eDNA inventories and spatial modelling can provide insights into species habitat preferences related to distance-to-reef gradients at a small scale. As such, eDNA can not only recover large compositional differences among islands but also help understand habitat selection and distribution of marine species at a finer spatial scale.

15.
Biology (Basel) ; 12(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998045

RESUMO

Seamounts are the least known ocean biome. Considered biodiversity hotspots, biomass oases, and refuges for megafauna, large gaps exist in their real diversity relative to other ecosystems like coral reefs. Using environmental DNA metabarcoding (eDNA) and baited video (BRUVS), we compared fish assemblages across five environments of different depths: coral reefs (15 m), shallow seamounts (50 m), continental slopes (150 m), intermediate seamounts (250 m), and deep seamounts (500 m). We modeled assemblages using 12 environmental variables and found depth to be the main driver of fish diversity and biomass, although other variables like human accessibility were important. Boosted Regression Trees (BRT) revealed a strong negative effect of depth on species richness, segregating coral reefs from deep-sea environments. Surprisingly, BRT showed a hump-shaped effect of depth on fish biomass, with significantly lower biomass on coral reefs than in shallowest deep-sea environments. Biomass of large predators like sharks was three times higher on shallow seamounts (50 m) than on coral reefs. The five studied environments showed quite distinct assemblages. However, species shared between coral reefs and deeper-sea environments were dominated by highly mobile large predators. Our results suggest that seamounts are no diversity hotspots for fish. However, we show that shallower seamounts form biomass oases and refuges for threatened megafauna, suggesting that priority should be given to their protection.

16.
Mol Ecol Resour ; 23(2): 396-409, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36151931

RESUMO

Environmental DNA (eDNA) metabarcoding is an effective method for studying fish communities but allows only an estimation of relative species abundance (density/biomass). Here, we combine metabarcoding with an estimation of the total abundance of eDNA amplified by our universal marker (teleo) using a quantitative (q)PCR approach to infer the absolute abundance of fish species. We carried out a 2850-km eDNA survey within the Danube catchment using a spatial integrative sampling protocol coupled with traditional electrofishing for fish biomass and density estimation. Total fish eDNA concentrations and total fish abundance were highly correlated. The correlation between eDNA concentrations per taxon and absolute specific abundance was of comparable strength when all sites were pooled and remained significant when the sites were considered separately. Furthermore, a nonlinear mixed model showed that species richness was underestimated when the amount of teleo-DNA extracted from a sample was below a threshold of 0.65 × 106 copies of eDNA. This result, combined with the decrease in teleo-DNA concentration by several orders of magnitude with river size, highlights the need to increase sampling effort in large rivers. Our results provide a comprehensive description of longitudinal changes in fish communities and underline our combined metabarcoding/qPCR approach for biomonitoring and bioassessment surveys when a rough estimate of absolute species abundance is sufficient.


Assuntos
DNA Ambiental , Animais , DNA Ambiental/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , DNA/genética , DNA/análise , Peixes/genética , Ecossistema
17.
Mol Ecol Resour ; 22(4): 1274-1283, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34724352

RESUMO

Environmental DNA (eDNA) is gaining a growing popularity among scientists but its applicability to biodiversity research and management remains limited in river systems by the lack of knowledge about the spatial extent of the downstream transport of eDNA. Here, we assessed the ability of eDNA inventories to retrieve spatial patterns of fish assemblages along two large and species-rich Neotropical rivers. We first examined overall community variation with distance through the distance decay of similarity and compared this pattern to capture-based samples. We then considered previous knowledge on individual species distributions, and compared it to the eDNA inventories for a set of 53 species. eDNA collected from 28 sites in the Maroni and 25 sites in the Oyapock rivers permitted to retrieve a decline of species similarity with increasing distance between sites. The distance decay of similarity derived from eDNA was similar and even more pronounced than that obtained with capture-based methods (gill-nets). In addition, the species upstream-downstream distribution range derived from eDNA matched to the known distribution of most species. Our results demonstrate that environmental DNA does not represent an integrative measure of biodiversity across the whole upstream river basin but provides a relevant picture of local fish assemblages. Importantly, the spatial signal gathered from eDNA was therefore comparable to that gathered with local capture-based methods, which describes fish fauna over a few hundred metres.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , Ecossistema , Monitoramento Ambiental/métodos , Peixes/genética , Rios
18.
Sci Rep ; 12(1): 10247, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715444

RESUMO

High-throughput DNA sequencing is becoming an increasingly important tool to monitor and better understand biodiversity responses to environmental changes in a standardized and reproducible way. Environmental DNA (eDNA) from organisms can be captured in ecosystem samples and sequenced using metabarcoding, but processing large volumes of eDNA data and annotating sequences to recognized taxa remains computationally expensive. Speed and accuracy are two major bottlenecks in this critical step. Here, we evaluated the ability of convolutional neural networks (CNNs) to process short eDNA sequences and associate them with taxonomic labels. Using a unique eDNA data set collected in highly diverse Tropical South America, we compared the speed and accuracy of CNNs with that of a well-known bioinformatic pipeline (OBITools) in processing a small region (60 bp) of the 12S ribosomal DNA targeting freshwater fishes. We found that the taxonomic labels from the CNNs were comparable to those from OBITools, with high correlation levels for the composition of the regional fish fauna. The CNNs enabled the processing of raw fastq files at a rate of approximately 1 million sequences per minute, which was about 150 times faster than with OBITools. Given the good performance of CNNs in the highly diverse ecosystem considered here, the development of more elaborate CNNs promises fast deployment for future biodiversity inventories using eDNA.


Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , DNA Ambiental/genética , Monitoramento Ambiental , Peixes/genética , Redes Neurais de Computação
19.
Nat Commun ; 13(1): 3290, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672313

RESUMO

Assessing the impact of human activity on ecosystems often links local biodiversity to disturbances measured within the same locality. However, remote disturbances may also affect local biodiversity. Here, we used environmental DNA metabarcoding to evaluate the relationships between vertebrate biodiversity (fish and mammals) and disturbance intensity in two Amazonian rivers. Measurements of anthropic disturbance -here forest cover losses- were made from the immediate vicinity of the biodiversity sampling sites to up to 90 km upstream. The findings suggest that anthropization had a spatially extended impact on biodiversity. Forest cover losses of <11% in areas up to 30 km upstream from the biodiversity sampling sites were linked to reductions of >22% in taxonomic and functional richness of both terrestrial and aquatic fauna. This underscores the vulnerability of Amazonian biodiversity even to low anthropization levels. The similar responses of aquatic and terrestrial fauna to remote disturbances indicate the need for cross-ecosystem conservation plans that consider the spatially extended effects of anthropization.


Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Florestas , Mamíferos/genética , Vertebrados/genética
20.
PLoS One ; 17(8): e0272660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960745

RESUMO

Environmental DNA (eDNA) metabarcoding is revolutionizing the monitoring of aquatic biodiversity. The use of eDNA has the potential to enable non-invasive, cost-effective, time-efficient and high-sensitivity monitoring of fish assemblages. Although the capacity of eDNA metabarcoding to describe fish assemblages is recognised, research efforts are still needed to better assess the spatial and temporal variability of the eDNA signal and to ultimately design an optimal sampling strategy for eDNA monitoring. In this context, we sampled three different lakes (a dam reservoir, a shallow eutrophic lake and a deep oligotrophic lake) every 6 weeks for 1 year. We performed four types of sampling for each lake (integrative sampling of sub-surface water along transects on the left shore, the right shore and above the deepest zone, and point sampling in deeper layers near the lake bottom) to explore the spatial variability of the eDNA signal at the lake scale over a period of 1 year. A metabarcoding approach was applied to analyse the 92 eDNA samples in order to obtain fish species inventories which were compared with traditional fish monitoring methods (standardized gillnet samplings). Several species known to be present in these lakes were only detected by eDNA, confirming the higher sensitivity of this technique in comparison with gillnetting. The eDNA signal varied spatially, with shoreline samples being richer in species than the other samples. Furthermore, deep-water samplings appeared to be non-relevant for regularly mixed lakes, where the eDNA signal was homogeneously distributed. These results also demonstrate a clear temporal variability of the eDNA signal that seems to be related to species phenology, with most of the species detected in spring during the spawning period on shores, but also a peak of detection in winter for salmonid and coregonid species during their reproduction period. These results contribute to our understanding of the spatio-temporal distribution of eDNA in lakes and allow us to provide methodological recommendations regarding where and when to sample eDNA for fish monitoring in lakes.


Assuntos
DNA Ambiental , Lagos , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , Monitoramento Ambiental/métodos , Peixes/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA