Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Respir J ; 60(1)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34887328

RESUMO

BACKGROUND: Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumours have not been explored. METHODS: To characterise the influence of mechanical ventilation on the behaviour of lung tumours, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechanodependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of nonventilated patients. RESULTS: Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in pro-protein convertase subtilisin/kexin type 9 (PCSK9) and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harbouring melanoma implants increased brain and kidney metastases 2 weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo. In patients, mechanical ventilation increased PCSK9 abundance in lung tumours and the incidence of metastasis, thus decreasing survival. CONCLUSIONS: Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.


Assuntos
Adenocarcinoma , Colesterol , Neoplasias Pulmonares , Melanoma , Pró-Proteína Convertase 9 , Respiração Artificial , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Colesterol/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Respiração Artificial/efeitos adversos
2.
J Intensive Care Med ; 35(12): 1497-1504, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31510864

RESUMO

BACKGROUND: Intensive care unit (ICU) environment disrupts the circadian rhythms due to environmental and other nonphotic synchronizers. The main purpose of this article is to establish whether critically patients have desynchronization at the molecular level after 1 week of stay in the ICU. METHODS: The rhythm of Clock, Bmal1, Cry1, and Per2 genes in neuro-ICU patients (n = 11) on the first day after admission in the unit (1 day) and 1 week later (1 week) was studied, 4 time points throughout the day, at 6, 12, 18, and 24 hours. Human whole blood samples were obtained from neuro-ICU patients. The total RNA was isolated and each sample was reverse transcribed to complementary DNA and quantitative polymerase chain reaction (PCRq) was performed. The possible rhythm was studied using Fourier Series. RESULTS: After 1 week, the clock gene rhythmicity completely disappeared. Messenger RNA (mRNA) expression for the 4 clock genes was shown rhythmicity at the first day after admission in the ICU. Circadian rhythmicity for none of them was observed but rather, ultradian rhythmicity was found. The expression of Clock, Bmal1, and Per2 mRNA after 1 week was similar in the 4-time point studies without significant fluctuation among the 4 time points analyzed. DISCUSSION: Rhythmic mRNA expression is present at the first day after admission in the ICU. However, ICU stay during 1 week affects the molecular machinery of the biological clock generating chronodisruption. Circadian disruption is associated with the risk of several pathologies, thus, it seems to be clear that ICU stay in constant conditions could adversely affect patient evolution and probably, circadian resynchronization restoring clock gene expression could lead to a better clinical evolution of the patient. CONCLUSIONS: Clock genes disruption is observed in neuro-ICU patients. Light therapy as well as melatonin treatment could reduce the impact of ICU stay period in biological clock, thereby improving patients' recovery.


Assuntos
Ritmo Circadiano , Estado Terminal , Unidades de Terapia Intensiva , Humanos , Melatonina/administração & dosagem , RNA Mensageiro
3.
Ann Intensive Care ; 11(1): 132, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34453620

RESUMO

BACKGROUND: Cardiogenic pulmonary oedema (CPE) may contribute to ventilator-associated lung injury (VALI) in patients with cardiogenic shock. The appropriate ventilatory strategy remains unclear. We aimed to evaluate the impact of ultra-low tidal volume ventilation with tidal volume of 3 ml/kg predicted body weight (PBW) in patients with CPE and veno-arterial extracorporeal membrane oxygenation (V-A ECMO) on lung inflammation compared to conventional ventilation. METHODS: A single-centre randomized crossover trial was performed in the Cardiac Intensive Care Unit (ICU) at a tertiary university hospital. Seventeen adults requiring V-A ECMO and mechanical ventilation due to cardiogenic shock were included from February 2017 to December 2018. Patients were ventilated for two consecutive periods of 24 h with tidal volumes of 6 and 3 ml/kg of PBW, respectively, applied in random order. Primary outcome was the change in proinflammatory mediators in bronchoalveolar lavage fluid (BALF) between both ventilatory strategies. RESULTS: Ventilation with 3 ml/kg PBW yielded lower driving pressures and end-expiratory lung volumes. Overall, there were no differences in BALF cytokines. Post hoc analyses revealed that patients with high baseline levels of IL-6 showed statistically significant lower levels of IL-6 and IL-8 during ultra-low tidal volume ventilation. This reduction was significantly proportional to the decrease in driving pressure. In contrast, those with lower IL-6 baseline levels showed a significant increase in these biomarkers. CONCLUSIONS: Ultra-low tidal volume ventilation in patients with CPE and V-A ECMO may attenuate inflammation in selected cases. VALI may be driven by an interaction between the individual proinflammatory profile and the mechanical load overimposed by the ventilator. Trial registration The trial was registered in ClinicalTrials.gov (identifier NCT03041428, Registration date: 2nd February 2017).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA