Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(4): 2282-2293, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657018

RESUMO

The palladium complex [(L1)Pd(µ-OAc)]2[OTf]2 (L1 = neocuproine) is a selective catalyst for the aerobic oxidation of vicinal polyols to α-hydroxyketones, but competitive oxidation of the ligand methyl groups limits the turnover number and necessitates high Pd loadings. Replacement of the neocuproine ligand with 2,2'-biquinoline ligands was investigated as a strategy to improve catalyst performance and explore the relationship between ligand structure and reactivity. Evaluation of [(L2)Pd(µ-OAc)]2[OTf]2 (L2 = 2,2'-biquinoline) as a catalyst for aerobic alcohol oxidation revealed a threefold enhancement in turnover number relative to the neocuproine congener, but a much slower rate. Mechanistic studies indicated that the slow rates observed with L2 were a consequence of precipitation of an insoluble trinuclear palladium species─(L2Pd)3(µ-O)22+─formed during catalysis and characterized by high-resolution electrospray ionization mass spectrometry. Density functional theory was used to predict that a sterically modified biquinoline ligand, L3 = 7,7'-di-tert-butyl-2,2'-biquinoline, would disfavor the formation of the trinuclear (LPd)3(µ-O)22+ species. This design strategy was validated as catalytic aerobic oxidation with [(L3)Pd(µ-OAc)]2[OTf]2 is both robust and rapid, marrying the kinetics of the parent L1-supported system with the high aerobic turnover numbers of the L2-supported system. Changes in ligand structure were also found to modulate regioselectivity in the oxidation of complex glycoside substrates, providing new insights into structure-selectivity relationships with this class of catalysts.

2.
Bioconjug Chem ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996808

RESUMO

Targeted delivery of nucleic acid therapeutics to the lungs could transform treatment options for pulmonary disease. We have previously developed oligomeric charge-altering releasable transporters (CARTs) for in vivo mRNA transfection and demonstrated their efficacy for use in mRNA-based cancer vaccination and local immunomodulatory therapies against murine tumors. While our previously reported glycine-based CART-mRNA complexes (G-CARTs/mRNA) show selective protein expression in the spleen (mouse, >99%), here, we report a new lysine-derived CART-mRNA complex (K-CART/mRNA) that, without additives or targeting ligands, shows selective protein expression in the lungs (mouse, >90%) following systemic IV administration. We further show that by delivering siRNA using the K-CART, we can significantly decrease expression of a lung-localized reporter protein. Blood chemistry and organ pathology studies demonstrate that K-CARTs are safe and well-tolerated. We report on the new step economical, organocatalytic synthesis (two steps) of functionalized polyesters and oligo-carbonate-co-α-aminoester K-CARTs from simple amino acid and lipid-based monomers. The ability to direct protein expression selectively in the spleen or lungs by simple, modular changes to the CART structure opens fundamentally new opportunities in research and gene therapy.

3.
Biomacromolecules ; 23(7): 2976-2988, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35748182

RESUMO

Charge-altering releasable transporters (CARTs) are a class of oligonucleotide delivery vehicles shown to be effective for delivery of messenger RNA (mRNA) both in vitro and in vivo. Here, we exploited the chemical versatility of the CART synthesis to generate CARTs containing the small-molecule drug fingolimod (FTY720) as a strategy to increase mRNA delivery and expression in lymphocytes through a specific ligand-receptor interaction. Fingolimod is an FDA-approved small-molecule drug that, upon in vivo phosphorylation, binds to the sphingosine-1-phosphate receptor 1 (S1P1), which is highly expressed on lymphocytes. Compared to its non-fingolimod-conjugated analogue, the fingolimod-conjugated CART achieved superior transfection of activated human and murine T and B lymphocytes in vitro. The higher transfection of the fingolimod-conjugated CARTs was lost when cells were exposed to a free fingolimod before transfection. In vivo, the fingolimod-conjugated CART showed increased mRNA delivery to marginal zone B cells and NK cells in the spleen, relative to CARTs lacking fingolimod. Moreover, fingolimod-CART-mediated mRNA delivery induces peripheral blood T-cell depletion similar to free fingolimod. Thus, we show that functionalization of CARTs with a pharmacologically validated small molecule can increase transfection of a cellular population of interest while conferring some of the targeting properties of the conjugated small molecule to the CARTs.


Assuntos
Cloridrato de Fingolimode , Linfócitos , Animais , Cloridrato de Fingolimode/farmacologia , Humanos , Imunossupressores/farmacologia , Camundongos , Propilenoglicóis/farmacologia , RNA Mensageiro/genética , Baço , Transfecção
4.
J Am Chem Soc ; 140(19): 6122-6129, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29669205

RESUMO

Substrate selectivity in reductive multielectron/proton catalysis with small molecules such as N2, CO2, and O2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P3BFe+, for catalyzing the nitrogen reduction reaction (N2RR, N2-to-NH3 conversion) versus HER changes as a function of acid p Ka. We find that there is a strong correlation between p Ka and N2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N2 reduction (e.g., Fe(NNH) or Fe(NNH2)) in the presence of the metallocene reductant Cp*2Co. This suggests that the interaction of acid and reductant is playing a critical role in N-H bond-forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N-H bonds critical for N2RR. Furthermore, DFT studies also suggest that the observed p Ka effect on N2RR efficiency is attributable to the rate and thermodynamics of Cp*2Co protonation by the different anilinium acids. Inclusion of Cp*2Co+ as a cocatalyst in controlled potential electrolysis experiments leads to improved yields of NH3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv of NH3 per Fe at -2.1 V vs Fc+/0).


Assuntos
Técnicas Eletroquímicas , Compostos de Ferro/química , Nitrogênio/química , Compostos Organometálicos/química , Catálise , Concentração de Íons de Hidrogênio , Conformação Molecular , Teoria Quântica
5.
J Am Chem Soc ; 138(16): 5341-50, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27026402

RESUMO

The mechanisms of the few known molecular nitrogen-fixing systems, including nitrogenase enzymes, are of much interest but are not fully understood. We recently reported that Fe-N2 complexes of tetradentate P3(E) ligands (E = B, C) generate catalytic yields of NH3 under an atmosphere of N2 with acid and reductant at low temperatures. Here we show that these Fe catalysts are unexpectedly robust and retain activity after multiple reloadings. Nearly an order of magnitude improvement in yield of NH3 for each Fe catalyst has been realized (up to 64 equiv of NH3 produced per Fe for P3(B) and up to 47 equiv for P3(C)) by increasing acid/reductant loading with highly purified acid. Cyclic voltammetry shows the apparent onset of catalysis at the P3(B)Fe-N2/P3(B)Fe-N2(-) couple and controlled-potential electrolysis of P3(B)Fe(+) at -45 °C demonstrates that electrolytic N2 reduction to NH3 is feasible. Kinetic studies reveal first-order rate dependence on Fe catalyst concentration (P3(B)), consistent with a single-site catalyst model. An isostructural system (P3(Si)) is shown to be appreciably more selective for hydrogen evolution. In situ freeze-quench Mössbauer spectroscopy during turnover reveals an iron-borohydrido-hydride complex as a likely resting state of the P3(B)Fe catalyst system. We postulate that hydrogen-evolving reaction activity may prevent iron hydride formation from poisoning the P3(B)Fe system. This idea may be important to consider in the design of synthetic nitrogenases and may also have broader significance given that intermediate metal hydrides and hydrogen evolution may play a key role in biological nitrogen fixation.


Assuntos
Ferro/metabolismo , Nitrogenase/química , Nitrogenase/metabolismo , Amônia/metabolismo , Catálise , Eletrólise , Hidrogênio/metabolismo , Ferro/química , Cinética , Fixação de Nitrogênio , Espectroscopia de Mossbauer
6.
Inorg Chem ; 54(19): 9256-62, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26001022

RESUMO

Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest and are currently limited to systems featuring molybdenum or iron. This report details the synthesis of a molecular cobalt complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to those of previously described iron and molybdenum systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, a comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential precatalysts is. These studies enable consideration of the structural and electronic effects that are likely relevant to N2 conversion activity, including the π basicity, charge state, and geometric flexibility.


Assuntos
Amônia/síntese química , Cobalto/química , Nitrogênio/química , Compostos Organometálicos/química , Amônia/química , Catálise , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química
7.
J Am Chem Soc ; 133(34): 13661-73, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21780813

RESUMO

Synthetic and kinetic experiments designed to probe the mechanism of O(2) activation by the trianionic pincer chromium(III) complex [(t)BuOCO]Cr(III)(THF)(3) (1) (where (t)BuOCO = [2,6-((t)BuC(6)H(3)O)(2)C(6)H(3)](3-), THF = tetrahydrofuran) are described. Whereas analogous porphyrin and corrole oxidation catalysts can become inactive toward O(2) activation upon dimerization (forming a µ-oxo species) or product inhibition, complex 1 becomes more active toward O(2) activation when dimerized. The product from O(2) activation, [(t)BuOCO]Cr(V)(O)(THF) (2), catalyzes the oxidation of 1 via formation of the µ-O dimer {[(t)BuOCO]Cr(IV)(THF)}(2)(µ-O) (3). Complex 3 exists in equilibrium with 1 and 2 and thus could not be isolated in pure form. However, single crystals of 3 and 1 co-deposit, and the molecular stucture of 3 was determined using single-crystal X-ray crystallography methods. Variable (9.5, 35, and 240 GHz) frequency electron paramagnetic resonance spectroscopy supports the assignment of complex 3 as a Cr(IV)-O-Cr(IV) dimer, with a high (S = 2) spin ground state, based on detailed computer simulations. Complex 3 is the first conclusively assigned example of a complex containing a Cr(IV) dimer; its spin Hamiltonian parameters are g(iso) = 1.976, D = 2400 G, and E = 750 G. The reaction of 1 with O(2) was monitored by UV-visible spectrophotometry, and the kinetic orders of the reagents were determined. The reaction does not exhibit first-order behavior with respect to the concentrations of complex 1 and O(2). Altering the THF concentration reveals an inverse order behavior in THF. A proposed autocatalytic mechanism, with 3 as the key intermediate, was employed in numerical simulations of concentration versus time decay plots, and the individual rate constants were calculated. The simulations agree well with the experimental observations. The acceleration is not unique to 2; for example, the presence of OPPh(3) accelerates O(2) activation by forming the five-coordinate complex trans-[(t)BuOCO]Cr(III)(OPPh(3))(2) (4).

8.
ACS Cent Sci ; 3(3): 217-223, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28386599

RESUMO

We have recently reported on several Fe catalysts for N2-to-NH3 conversion that operate at low temperature (-78 °C) and atmospheric pressure while relying on a very strong reductant (KC8) and acid ([H(OEt2)2][BArF4]). Here we show that our original catalyst system, P3BFe, achieves both significantly improved efficiency for NH3 formation (up to 72% for e- delivery) and a comparatively high turnover number for a synthetic molecular Fe catalyst (84 equiv of NH3 per Fe site), when employing a significantly weaker combination of reductant (Cp*2Co) and acid ([Ph2NH2][OTf] or [PhNH3][OTf]). Relative to the previously reported catalysis, freeze-quench Mössbauer spectroscopy under turnover conditions suggests a change in the rate of key elementary steps; formation of a previously characterized off-path borohydrido-hydrido resting state is also suppressed. Theoretical and experimental studies are presented that highlight the possibility of protonated metallocenes as discrete PCET reagents under the present (and related) catalytic conditions, offering a plausible rationale for the increased efficiency at reduced driving force of this Fe catalyst system.

9.
Dalton Trans ; 42(42): 14963-6, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24036497

RESUMO

Metal-azide-metal-acetylide cycloaddition (iClick) reactions to synthesize heterotrimetallics and an unexpected novel tetranuclear gold(I) complex, are described. In addition, a discussion regarding the connection between traditional azide-alkyne cycloaddition reactions and iClick is presented focusing on applications towards linking multiple metal ions.

10.
Dalton Trans ; 41(8): 2237-46, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22094964

RESUMO

The oxygen-atom-transfer (OAT) from [(t)BuOCO]Cr(V)(O)(THF) (2) (where (t)BuOCO = [2,6-C(6)H(3)(6-(t)BuC(6)H(3)O)(2)](3-), THF = tetrahydrofuran) to triphenylphosphine (PPh(3)) in THF produces [(t)BuOCO]Cr(III)(THF)(3) (1) and triphenylphosphine oxide (OPPh(3)) at a rate of 69.5(±1.9) M(-1) s(-1) (22 °C). Identical rate constants were attained when acetonitrile (MeCN) and dichloromethane/THF (CH(2)Cl(2)/THF) were used as solvents. Electron paramagnetic resonance (EPR) data shows that the six-coordinate complex, [(t)BuOCO]Cr(V)(O)(THF)(2) (2a) forms upon addition of THF to 2, suggesting 2a as the active OAT species in THF. Similarly, addition of OPPh(3) has no influence on the rate of OAT, but the addition of triphenylphosphorus ylide (CH(2)PPh(3)) to form [(t)BuOCO]Cr(V)(O)(CH(2)PPh(3)) (4) prevents OAT to PPh(3). In CH(2)Cl(2), a [Cr(IV)](2)(µ-O) intermediate forms during the OAT from 2 to PPh(3). The OAT from {[(t)BuOCO]Cr(IV)(THF)}(2)(µ-O) (3) to PPh(3) reveals a zero-order dependence in PPh(3) indicating the dimer must first dissociate prior to OAT. The decay of 3versus time does not follow first-order kinetics due to the formation of a [(t)BuOCO]Cr(III)(THF) species (5) that inhibits the dissociation of 3. The change in concentration of 3versus time during OAT was simulated to obtain approximate rate constants.

11.
Dalton Trans ; 40(32): 8140-4, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21725564

RESUMO

This report describes the synthesis and characterization of 1,5-bis-triphenylphosphinegold(I) 1,2,3-triazolate (3((1,5))). The synthesis of the dinuclear complex 3((1,5)) is achieved via an unprecedented inorganic click (iClick) reaction between the metal-azide PPh(3)AuN(3) (1) and the metal-acetylide PPh(3)Au-C≡CPh (2). Characterization of 3((1,5)) includes multinuclear NMR spectroscopy, combustion analysis, and single crystal X-ray crystallography. Experimental characterization is complemented with density-functional-theory (DFT) calculations which indicate the 1,4-isomer 3((1,4)) is less stable by 3.3 kcal mol(-1). The energetic difference lies primarily in the ability of the phenyl group in the 4-position of 3((1,5)) to lie coplanar with the triazolate to create a delocalized π-bonding HOMO orbital.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA