Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193550

RESUMO

Simulations of condensed matter systems often focus on the dynamics of a few distinguished components but require integrating the full system. A prime example is a molecular dynamics simulation of a (macro)molecule in a solution, where the molecule(s) and the solvent dynamics need to be integrated, rendering the simulations computationally costly and often unfeasible for physically/biologically relevant time scales. Standard coarse graining approaches can reproduce equilibrium distributions and structural features but do not properly include the dynamics. In this work, we develop a general data-driven coarse-graining methodology inspired by the Mori-Zwanzig formalism, which shows that macroscopic systems with a large number of degrees of freedom can be described by a few relevant variables and additional noise and memory terms. Our coarse-graining method consists of numerical integrators for the distinguished components, where the noise and interaction terms with other system components are substituted by a random variable sampled from a data-driven model. The model is parameterized using data from multiple short-time full-system simulations, and then, it is used to run long-time simulations. Applying our methodology to three systems-a distinguished particle under a harmonic and a bistable potential and a dimer with two metastable configurations-the resulting coarse-grained models are capable of reproducing not only the equilibrium distributions but also the dynamic behavior due to temporal correlations and memory effects. Remarkably, our method even reproduces the transition dynamics between metastable states, which is challenging to capture correctly. Our approach is not constrained to specific dynamics and can be extended to systems beyond Langevin dynamics, and, in principle, even to non-equilibrium dynamics.

2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34321356

RESUMO

To advance the mission of in silico cell biology, modeling the interactions of large and complex biological systems becomes increasingly relevant. The combination of molecular dynamics (MD) simulations and Markov state models (MSMs) has enabled the construction of simplified models of molecular kinetics on long timescales. Despite its success, this approach is inherently limited by the size of the molecular system. With increasing size of macromolecular complexes, the number of independent or weakly coupled subsystems increases, and the number of global system states increases exponentially, making the sampling of all distinct global states unfeasible. In this work, we present a technique called independent Markov decomposition (IMD) that leverages weak coupling between subsystems to compute a global kinetic model without requiring the sampling of all combinatorial states of subsystems. We give a theoretical basis for IMD and propose an approach for finding and validating such a decomposition. Using empirical few-state MSMs of ion channel models that are well established in electrophysiology, we demonstrate that IMD models can reproduce experimental conductance measurements with a major reduction in sampling compared with a standard MSM approach. We further show how to find the optimal partition of all-atom protein simulations into weakly coupled subunits.


Assuntos
Cadeias de Markov , Proteínas/metabolismo , Simulação por Computador , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química
3.
J Chem Phys ; 155(12): 124109, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598578

RESUMO

A novel approach to simulate simple protein-ligand systems at large time and length scales is to couple Markov state models (MSMs) of molecular kinetics with particle-based reaction-diffusion (RD) simulations, MSM/RD. Currently, MSM/RD lacks a mathematical framework to derive coupling schemes, is limited to isotropic ligands in a single conformational state, and lacks multiparticle extensions. In this work, we address these needs by developing a general MSM/RD framework by coarse-graining molecular dynamics into hybrid switching diffusion processes. Given enough data to parameterize the model, it is capable of modeling protein-protein interactions over large time and length scales, and it can be extended to handle multiple molecules. We derive the MSM/RD framework, and we implement and verify it for two protein-protein benchmark systems and one multiparticle implementation to model the formation of pentameric ring molecules. To enable reproducibility, we have published our code in the MSM/RD software package.


Assuntos
Difusão , Ligantes , Cadeias de Markov , Simulação de Dinâmica Molecular , Proteínas/química , Cinética , Reprodutibilidade dos Testes , Software
4.
J Chem Phys ; 149(4): 044102, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30068197

RESUMO

Smoluchowski-type models for diffusion-influenced reactions (A + B → C) can be formulated within two frameworks: the probabilistic-based approach for a pair A, B of reacting particles and the concentration-based approach for systems in contact with a bath that generates a concentration gradient of B particles that interact with A. Although these two approaches are mathematically similar, it is not straightforward to establish a precise mathematical relationship between them. Determining this relationship is essential to derive particle-based numerical methods that are quantitatively consistent with bulk concentration dynamics. In this work, we determine the relationship between the two approaches by introducing the grand canonical Smoluchowski master equation (GC-SME), which consists of a continuous-time Markov chain that models an arbitrary number of B particles, each one of them following Smoluchowski's probabilistic dynamics. We show that the GC-SME recovers the concentration-based approach by taking either the hydrodynamic or the large copy number limit. In addition, we show that the GC-SME provides a clear statistical mechanical interpretation of the concentration-based approach and yields an emergent chemical potential for nonequilibrium spatially inhomogeneous reaction processes. We further exploit the GC-SME robust framework to accurately derive multiscale/hybrid numerical methods that couple particle-based reaction-diffusion simulations with bulk concentration descriptions, as described in detail through two computational implementations.

5.
J Chem Phys ; 148(21): 214107, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884049

RESUMO

Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.

6.
J Phys Chem B ; 118(25): 7037-46, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24877790

RESUMO

The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [ Biopolymers 1974, 13, 1 - 27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems, there are no closed solutions; therefore, stochastic Monte Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Our results show that current linear FCS theory could be adequate for measurements on biological systems that contain many other sources of uncertainties. At the same time, it provides a framework for future measurements of nonlinear, fluctuating chemical reactions with high-precision FCS. Extending Delbrück-Gillespie's theory for stochastic nonlinear reactions with rapid stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic levels, such as a single biological cell.


Assuntos
Modelos Químicos , Difusão , Método de Monte Carlo , Soluções/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA