Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180241

RESUMO

Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataracts. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq and CUT&RUN-seq to discover previously unreported mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Furthermore, we identify an epigenetic paradigm of cellular differentiation, defined by progressive loss of the H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.


Assuntos
Catarata , Cristalino , Humanos , Multiômica , Catarata/genética , Diferenciação Celular/genética , Olho
2.
Differentiation ; 132: 15-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37055300

RESUMO

BACKGROUND: Aging and regeneration are heavily linked processes. While it is generally accepted that regenerative capacity declines with age, some vertebrates, such as newts, can bypass the deleterious effects of aging and successfully regenerate a lens throughout their lifetime. RESULTS: Here, we used Spectral-Domain Optical Coherence Tomography (SD-OCT) to monitor the lens regeneration process of larvae, juvenile, and adult newts. While all three life stages were able to regenerate a lens through transdifferentiation of the dorsal iris pigment epithelial cells (iPECs), an age-related change in the kinetics of the regeneration process was observed. Consistent with these findings, iPECs from older animals exhibited a delay in cell cycle re-entry. Furthermore, it was observed that clearance of the extracellular matrix (ECM) was delayed in older organisms. CONCLUSIONS: Collectively, our results suggest that although lens regeneration capacity does not decline throughout the lifespan of newts, the intrinsic and extrinsic cellular changes associated with aging alter the kinetics of this process. By understanding how these changes affect lens regeneration in newts, we can gain important insights for restoring the age-related regeneration decline observed in most vertebrates.


Assuntos
Cristalino , Pleurodeles , Animais , Salamandridae , Matriz Extracelular , Divisão Celular
3.
Hum Genomics ; 15(1): 26, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962680

RESUMO

BACKGROUND: Mathematical approaches have been for decades used to probe the structure of DNA sequences. This has led to the development of Bioinformatics. In this exploratory work, a novel mathematical method is applied to probe the DNA structure of two related viral families: those of coronaviruses and those of influenza viruses. The coronaviruses are SARS-CoV-2, SARS-CoV-1, and MERS. The influenza viruses include H1N1-1918, H1N1-2009, H2N2-1957, and H3N2-1968. METHODS: The mathematical method used is the slow feature analysis (SFA), a rather new but promising method to delineate complex structure in DNA sequences. RESULTS: The analysis indicates that the DNA sequences exhibit an elaborate and convoluted structure akin to complex networks. We define a measure of complexity and show that each DNA sequence exhibits a certain degree of complexity within itself, while at the same time there exists complex inter-relationships between the sequences within a family and between the two families. From these relationships, we find evidence, especially for the coronavirus family, that increasing complexity in a sequence is associated with higher transmission rate but with lower mortality. CONCLUSIONS: The complexity measure defined here may hold a promise and could become a useful tool in the prediction of transmission and mortality rates in future new viral strains.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Modelos Genéticos , Betacoronavirus/fisiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Evolução Molecular , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/mortalidade , Influenza Humana/transmissão , Influenza Humana/virologia , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
4.
Dev Biol ; 433(2): 394-403, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291983

RESUMO

The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Regeneração/efeitos dos fármacos , Retina/fisiologia , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Embrião de Galinha , Corpo Ciliar/citologia , Dissulfetos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oxirredução , Regeneração/fisiologia , Retina/efeitos dos fármacos , Células-Tronco/citologia , Compostos de Sulfidrila/metabolismo
5.
Dev Biol ; 428(1): 88-100, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576690

RESUMO

Complement components have been implicated in a wide variety of functions including neurogenesis, proliferation, cell migration, differentiation, cancer, and more recently early development and regeneration. Following our initial observations indicating that C3a/C3aR signaling induces chick retina regeneration, we analyzed its role in chick eye morphogenesis. During eye development, the optic vesicle (OV) invaginates to generate a bilayer optic cup (OC) that gives rise to the retinal pigmented epithelium (RPE) and neural retina. We show by immunofluorescence staining that C3 and the receptor for C3a (the cleaved and active form of C3), C3aR, are present in chick embryos during eye morphogenesis in the OV and OC. Interestingly, C3aR is mainly localized in the nuclear compartment at the OC stage. Loss of function studies at the OV stage using morpholinos or a blocking antibody targeting the C3aR (anti-C3aR Ab), causes eye defects such as microphthalmia and defects in the ventral portion of the eye that result in coloboma. Such defects were not observed when C3aR was disrupted at the OC stage. Histological analysis demonstrated that microphthalmic eyes were unable to generate a normal optic stalk or a closed OC. The dorsal/ventral patterning defects were accompanied by an expansion of the ventral markers Pax2, cVax and retinoic acid synthesizing enzyme raldh-3 (aldh1a3) domains, an absence of the dorsal expression of Tbx5 and raldh-1 (aldh1a1) and a re-specification of the ventral RPE to neuroepithelium. In addition, the eyes showed overall decreased expression of Gli1 and a change in distribution of nuclear ß-catenin, suggesting that Shh and Wnt pathways have been affected. Finally, we observed prominent cell death along with a decrease in proliferating cells, indicating that both processes contribute to the microphthalmic phenotype. Together our results show that C3aR is necessary for the proper morphogenesis of the OC. This is the first report implicating C3aR in eye development, revealing an unsuspected hitherto regulator for proper chick eye morphogenesis.


Assuntos
Padronização Corporal/fisiologia , Complemento C3a/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Complemento/metabolismo , Epitélio Pigmentado da Retina/embriologia , Aldeído Desidrogenase/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Proteínas Hedgehog/metabolismo , Microftalmia/embriologia , Morfogênese/fisiologia , Fator de Transcrição PAX2/metabolismo , Receptores de Complemento/genética , Retinal Desidrogenase/metabolismo , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína GLI1 em Dedos de Zinco/biossíntese , beta Catenina/metabolismo
7.
FASEB J ; 28(4): 1854-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421398

RESUMO

Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (~15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1-2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ~50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.


Assuntos
Cegueira/etiologia , Suplementos Nutricionais/toxicidade , Manose-6-Fosfato Isomerase/metabolismo , Manose/toxicidade , Animais , Cegueira/genética , Cegueira/metabolismo , Western Blotting , Células Cultivadas , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Olho/embriologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Manose/sangue , Manose/metabolismo , Manose-6-Fosfato Isomerase/genética , Manosefosfatos/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placenta/efeitos dos fármacos , Placenta/embriologia , Placenta/metabolismo , Gravidez
8.
BMC Biol ; 12: 28, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24742279

RESUMO

BACKGROUND: One of the promises in regenerative medicine is to regenerate or replace damaged tissues. The embryonic chick can regenerate its retina by transdifferentiation of the retinal pigmented epithelium (RPE) and by activation of stem/progenitor cells present in the ciliary margin. These two ways of regeneration occur concomitantly when an external source of fibroblast growth factor 2 (FGF2) is present after injury (retinectomy). During the process of transdifferentiation, the RPE loses its pigmentation and is reprogrammed to become neuroepithelium, which differentiates to reconstitute the different cell types of the neural retina. Somatic mammalian cells can be reprogrammed to become induced pluripotent stem cells by ectopic expression of pluripotency-inducing factors such as Oct4, Sox2, Klf4, c-Myc and in some cases Nanog and Lin-28. However, there is limited information concerning the expression of these factors during natural regenerative processes. Organisms that are able to regenerate their organs could share similar mechanisms and factors with the reprogramming process of somatic cells. Herein, we investigate the expression of pluripotency-inducing factors in the RPE after retinectomy (injury) and during transdifferentiation in the presence of FGF2. RESULTS: We present evidence that upon injury, the quiescent (p27(Kip1)+/BrdU-) RPE cells transiently dedifferentiate and express sox2, c-myc and klf4 along with eye field transcriptional factors and display a differential up-regulation of alternative splice variants of pax6. However, this transient process of dedifferentiation is not sustained unless FGF2 is present. We have identified lin-28 as a downstream target of FGF2 during the process of retina regeneration. Moreover, we show that overexpression of lin-28 after retinectomy was sufficient to induce transdifferentiation of the RPE in the absence of FGF2. CONCLUSION: These findings delineate in detail the molecular changes that take place in the RPE during the process of transdifferentiation in the embryonic chick, and specifically identify Lin-28 as an important factor in this process. We propose a novel model in which injury signals initiate RPE dedifferentiation, while FGF2 up-regulates Lin-28, allowing for RPE transdifferentiation to proceed.


Assuntos
Reprogramação Celular , Galinhas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Ciclo Celular/efeitos dos fármacos , Desdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Proteínas do Olho/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/embriologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Stem Cell Res Ther ; 15(1): 141, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745238

RESUMO

BACKGROUND: Previous studies have suggested that macrophages are present during lens regeneration in newts, but their role in the process is yet to be elucidated. METHODS: Here we generated a transgenic reporter line using the newt, Pleurodeles waltl, that traces macrophages during lens regeneration. Furthermore, we assessed early changes in gene expression during lens regeneration using two newt species, Notophthalmus viridescens and Pleurodeles waltl. Finally, we used clodronate liposomes to deplete macrophages during lens regeneration in both species and tested the effect of a subsequent secondary injury after macrophage recovery. RESULTS: Macrophage depletion abrogated lens regeneration, induced the formation of scar-like tissue, led to inflammation, decreased iris pigment epithelial cell (iPEC) proliferation, and increased rates of apoptosis in the eye. Some of these phenotypes persisted throughout the last observation period of 100 days and could be attenuated by exogenous FGF2 administration. A distinct transcript profile encoding acute inflammatory effectors was established for the dorsal iris. Reinjury of the newt eye alleviated the effects of macrophage depletion, including the resolution of scar-like tissue, and re-initiated the regeneration process. CONCLUSIONS: Together, our findings highlight the importance of macrophages for facilitating a pro-regenerative environment in the newt eye by regulating fibrotic responses, modulating the overall inflammatory landscape, and maintaining the proper balance of early proliferation and late apoptosis of the iPECs.


Assuntos
Fibrose , Cristalino , Macrófagos , Regeneração , Salamandridae , Animais , Macrófagos/metabolismo , Regeneração/efeitos dos fármacos , Cristalino/metabolismo , Cristalino/citologia , Cristalino/lesões , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
10.
Biochem J ; 447(3): 321-34, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23035979

RESUMO

Comparative studies of lens and retina regeneration have been conducted within a wide variety of animals over the last 100 years. Although amphibians, fish, birds and mammals have all been noted to possess lens- or retina-regenerative properties at specific developmental stages, lens or retina regeneration in adult animals is limited to lower vertebrates. The present review covers the newest perspectives on lens and retina regeneration from these different model organisms with a focus on future trends in regeneration research.


Assuntos
Cristalino/fisiologia , Regeneração/fisiologia , Retina/fisiologia , Anfíbios , Animais , Humanos , Cristalino/anatomia & histologia , Mamíferos , Modelos Animais , Retina/anatomia & histologia , Especificidade da Espécie
11.
BMC Biol ; 10: 103, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23244204

RESUMO

BACKGROUND: Among vertebrates lens regeneration is most pronounced in newts, which have the ability to regenerate the entire lens throughout their lives. Regeneration occurs from the dorsal iris by transdifferentiation of the pigment epithelial cells. Interestingly, the ventral iris never contributes to regeneration. Frogs have limited lens regeneration capacity elicited from the cornea during pre-metamorphic stages. The axolotl is another salamander which, like the newt, regenerates its limbs or its tail with the spinal cord, but up until now all reports have shown that it does not regenerate the lens. RESULTS: Here we present a detailed analysis during different stages of axolotl development, and we show that despite previous beliefs the axolotl does regenerate the lens, however, only during a limited time after hatching. We have found that starting at stage 44 (forelimb bud stage) lens regeneration is possible for nearly two weeks. Regeneration occurs from the iris but, in contrast to the newt, regeneration can be elicited from either the dorsal or the ventral iris and, occasionally, even from both in the same eye. Similar studies in the zebra fish concluded that lens regeneration is not possible. CONCLUSIONS: Regeneration of the lens is possible in the axolotl, but differs from both frogs and newts. Thus the axolotl iris provides a novel and more plastic strategy for lens regeneration.


Assuntos
Ambystoma mexicanum/crescimento & desenvolvimento , Ambystoma mexicanum/fisiologia , Cristalino/crescimento & desenvolvimento , Cristalino/fisiologia , Regeneração/fisiologia , Animais , Proliferação de Células , Embrião não Mamífero/citologia , Cabeça/crescimento & desenvolvimento , Larva/citologia , Cristalino/citologia , Cristalino/cirurgia
12.
Methods Mol Biol ; 2562: 197-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36272077

RESUMO

Lens regeneration in the adult newt illustrates a unique example of naturally occurring cell transdifferentiation. During this process, iris pigmented epithelial cells (iPECs) reprogram into a lens, a tissue that is derived from a different embryonic source. Several methodologies both in vivo and in culture have been utilized over the years to observe this phenomenon. Most recently, Optical Coherence Tomography (OCT) has been identified as an effective tool to study the lens regeneration process in continuity through noninvasive, real-time imaging of the same animal. Described in this chapter are three different methodologies that can be used to observe the newt lens regeneration process both in vivo and ex vivo.


Assuntos
Cristalino , Animais , Salamandridae , Transdiferenciação Celular , Células Epiteliais
13.
Methods Mol Biol ; 2562: 259-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36272082

RESUMO

Salamanders have been used as research models for centuries. While they exhibit a wide range of biological features not seen in mammals, none has captivated scientists like their ability to regenerate. Interestingly, axolotl macrophages have emerged as an essential cell population for tissue regeneration. Whether the same is true in other salamanders such as newt species Notophthalmus viridescens, Cynops pyrrhogaster, or Pleurodeles waltl remains to be seen. Unfortunately, regardless of the species, molecular tools to study macrophage function in salamanders are lacking. We propose that the readily available, terminally differentiated peritoneal macrophages from newts or axolotls could be used to validate molecular reagents in the study of macrophage function during tissue regeneration in salamanders.


Assuntos
Macrófagos Peritoneais , Urodelos , Animais , Pleurodeles , Mamíferos , Salamandridae
14.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808829

RESUMO

During tissue regeneration, proliferation, dedifferentiation, and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis, and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine, or pyruvate are sufficient to support RPE reprogramming identifying glycolysis as a requisite. Conversely, the induction of oxidative metabolism by activation of pyruvate dehydrogenase induces Epithelial-to-mesenchymal transition (EMT), while simultaneously blocking the activation of neural retina fate. We also identify that EMT is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.

15.
NPJ Genom Med ; 8(1): 22, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580330

RESUMO

Genomic sequences residing within introns of few genes have been shown to act as enhancers affecting expression of neighboring genes. We studied an autosomal recessive phenotypic continuum of microphthalmia, anophthalmia and ocular coloboma, with no apparent coding-region disease-causing mutation. Homozygosity mapping of several affected Jewish Iranian families, combined with whole genome sequence analysis, identified a 0.5 Mb disease-associated chromosome 2q35 locus (maximal LOD score 6.8) harboring an intronic founder variant in NHEJ1, not predicted to affect NHEJ1. The human NHEJ1 intronic variant lies within a known specifically limb-development enhancer of a neighboring gene, Indian hedgehog (Ihh), known to be involved in eye development in mice and chickens. Through mouse and chicken molecular development studies, we demonstrated that this variant is within an Ihh enhancer that drives gene expression in the developing eye and that the identified variant affects this eye-specific enhancer activity. We thus delineate an Ihh enhancer active in mammalian eye development whose variant causes human microphthalmia, anophthalmia and ocular coloboma. The findings highlight disease causation by an intronic variant affecting the expression of a neighboring gene, delineating molecular pathways of eye development.

16.
Mol Med ; 18: 528-38, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22270329

RESUMO

The high recurrence rate of secondary cataract (SC) is caused by the intrinsic differentiation activity of residual lens epithelial cells after extra-capsular lens removal. The objective of this study was to identify changes in the microRNA (miRNA) expression profile during mouse SC formation and to selectively manipulate miRNA expression for potential therapeutic intervention. To model SC, mouse cataract surgery was performed and temporal changes in the miRNA expression pattern were determined by microarray analysis. To study the potential SC counterregulative effect of miRNAs, a lens capsular bag in vitro model was used. Within the first 3 wks after cataract surgery, microarray analysis demonstrated SC-associated expression pattern changes of 55 miRNAs. Of the identified miRNAs, miR-184 and miR-204 were chosen for further investigations. Manipulation of miRNA expression by the miR-184 inhibitor (anti-miR-184) and the precursor miRNA for miR-204 (pre-miR-204) attenuated SC-associated expansion and migration of lens epithelial cells and signs of epithelial to mesenchymal transition such as α-smooth muscle actin expression. In addition, pre-miR-204 attenuated SC-associated expression of the transcription factor Meis homeobox 2 (MEIS2). Examination of miRNA target binding sites for miR-184 and miR-204 revealed an extensive range of predicted target mRNA sequences that were also a target to a complex network of other SC-associated miRNAs with possible opposing functions. The identification of the SC-specific miRNA expression pattern together with the observed in vitro attenuation of SC by anti-miR-184 and pre-miR-204 suggest that miR-184 and miR-204 play a significant role in the control of SC formation in mice that is most likely regulated by a complex competitive RNA network.


Assuntos
Catarata/metabolismo , MicroRNAs/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries
17.
Front Cell Dev Biol ; 10: 875155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517508

RESUMO

The retinal pigment epithelium (RPE) exhibits a diverse range of plasticity across vertebrates and is a potential source of cells for the regeneration of retinal neurons. Embryonic amniotes possess a transitory ability to regenerate neural retina through the reprogramming of RPE cells in an FGF-dependent manner. Chicken RPE can regenerate neural retina at embryonic day 4 (E4), but RPE neural competence is lost by embryonic day 5 (E5). To identify mechanisms that underlie loss of regenerative competence, we performed RNA and ATAC sequencing using E4 and E5 chicken RPE, as well as at both stages following retinectomy and FGF2 treatment. We find that genes associated with neural retina fate remain FGF2-inducible in the non-regenerative E5 RPE. Coinciding with fate restriction, RPE cells stably exit the cell cycle and dampen the expression of cell cycle progression genes normally expressed during regeneration, including E2F1. E5 RPE exhibits progressive activation of gene pathways associated with mature function independently of retinectomy or FGF2 treatment, including retinal metabolism, pigmentation synthesis, and ion transport. Moreover, the E5 RPE fails to efficiently repress OTX2 expression in response to FGF2. Predicted OTX2 binding motifs undergo robust accessibility increases in E5 RPE, many of which coincide with putative regulatory elements for genes known to facilitate RPE differentiation and maturation. Together, these results uncover widespread alterations in gene regulation that culminate in the loss of RPE neural competence and implicate OTX2 as a key determinant in solidifying the RPE fate. These results yield valuable insight to the basis of RPE lineage restriction during early development and will be of importance in understanding the varying capacities for RPE-derived retinal regeneration observed among vertebrates.

18.
FASEB J ; 24(9): 3462-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20460584

RESUMO

The ability to reprogram in vivo a somatic cell after differentiation is quite limited. One of the most impressive examples of such a process is transdifferentiation of pigmented epithelial cells (PECs) to lens cells during lens regeneration in newts. However, very little is known of the molecular events that allow newt cells to transdifferentiate. Histone B4 is an oocyte-type linker histone that replaces the somatic-type linker histone H1 during reprogramming mediated by somatic cell nuclear transfer (SCNT). We found that B4 is expressed and required during transdifferentiation of PECs. Knocking down of B4 decreased proliferation and increased apoptosis, which resulted in considerable smaller lens. Furthermore, B4 knockdown altered gene expression of key genes of lens differentiation and nearly abolished expression of gamma-crystallin. These data are the first to show expression of oocyte-type linker histone in somatic cells and its requirement in newt lens transdifferentiation and suggest that transdifferentiation in newts might share common strategies with reprogramming after SCNT.


Assuntos
Histonas/metabolismo , Cristalino/metabolismo , Salamandridae/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Proliferação de Células , Transdiferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Histonas/genética , Imuno-Histoquímica , Cristalino/citologia , Dados de Sequência Molecular , Técnicas de Transferência Nuclear , Regeneração/genética , Regeneração/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salamandridae/genética , gama-Cristalinas/genética , gama-Cristalinas/metabolismo
19.
Nature ; 438(7069): 858-62, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16341014

RESUMO

Lens regeneration in adult newts is a classic example of how cells can faithfully regenerate a complete organ through the process of transdifferentiation. After lens removal, the pigment epithelial cells of the dorsal, but not the ventral, iris dedifferentiate and then differentiate to form a new lens. Understanding how this process is regulated might provide clues about why lens regeneration does not occur in higher vertebrates. The genes six-3 and pax-6 are known to induce ectopic lenses during embryogenesis. Here we tested these genes, as well as members of the bone morphogenetic protein (BMP) pathway that regulate establishment of the dorsal-ventral axis in embryos, for their ability to induce lens regeneration. We show that the lens can be regenerated from the ventral iris when the BMP pathway is inhibited and when the iris is transfected with six-3 and treated with retinoic acid. In intact irises, six-3 is expressed at higher levels in the ventral than in the dorsal iris. During regeneration, however, only expression in the dorsal iris is significantly increased. Such an increase is seen in ventral irises only when they are induced to transdifferentiate by six-3 and retinoic acid or by BMP inhibitors. These data suggest that lens regeneration can be achieved in noncompetent adult tissues and that this regeneration occurs through a gene regulatory mechanism that is more complex than the dorsal expression of lens regeneration-specific genes.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Cristalino/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Regeneração/fisiologia , Salamandridae/fisiologia , Ambystoma , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Iris/citologia , Iris/efeitos dos fármacos , Iris/crescimento & desenvolvimento , Iris/fisiologia , Cristalino/citologia , Cristalino/efeitos dos fármacos , Cristalino/crescimento & desenvolvimento , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/efeitos dos fármacos , Epitélio Pigmentado Ocular/metabolismo , Regeneração/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Salamandridae/genética , Tretinoína/farmacologia , Proteína Homeobox SIX3
20.
Ann Biomed Eng ; 49(7): 1633-1644, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33825081

RESUMO

Age-related macular degeneration (AMD) is a retinal disease that affects 196 million people and causes nearly 9% of blindness worldwide. While several pharmacological approaches slow the effects of AMD, in our opinion, cell-based strategies offer the most likely path to a cure. We describe the design and initial characterization of a kerateine (obtained by reductive extraction from keratin proteins) aerogel-electrospun polycaprolactone fiber scaffold system. The scaffolds mimic key features of the choroid and the Bruch's membrane, which is the basement membrane to which the cells of the retinal pigment epithelium (RPE) attach. The scaffolds had elastic moduli of 2-7.2 MPa, a similar range as native choroid and Bruch's membrane. ARPE-19 cells attached to the polycaprolactone fibers, remained viable for one week, and proliferated to form a monolayer reminiscent of that needed for retinal repair. These constructs could serve as a model system for testing cell and/or drug treatment strategies or directing ex vivo retinal tissue formation in the treatment of AMD.


Assuntos
Materiais Biomiméticos/química , Técnicas de Cultura de Células , Queratinas/química , Poliésteres/química , Epitélio Pigmentado da Retina/metabolismo , Alicerces Teciduais/química , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA