Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 80(4): 569-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25270985

RESUMO

Plant purple acid phosphatases (PAPs) belong to a relatively large gene family whose individual functions are poorly understood. Three PAP isozymes that are up-regulated in the cell walls of phosphate (Pi)-starved (-Pi) Arabidopsis thaliana suspension cells were purified and identified by MS as AtPAP12 (At2g27190), AtPAP25 (At4g36350) and AtPAP26 (At5g34850). AtPAP12 and AtPAP26 were previously isolated from the culture medium of -Pi cell cultures, and shown to be secreted by roots of Arabidopsis seedlings to facilitate Pi scavenging from soil-localized organophosphates. AtPAP25 exists as a 55 kDa monomer containing complex NX(S/T) glycosylation motifs at Asn172, Asn367 and Asn424. Transcript profiling and immunoblotting with anti-AtPAP25 immune serum indicated that AtPAP25 is exclusively synthesized under -Pi conditions. Coupled with potent mixed-type inhibition of AtPAP25 by Pi (I50 = 50 µm), this indicates a tight feedback control by Pi that prevents AtPAP25 from being synthesized or functioning as a phosphatase except when Pi levels are quite low. Promoter-GUS reporter assays revealed AtPAP25 expression in shoot vascular tissue of -Pi plants. Development of an atpap25 T-DNA insertion mutant was arrested during cultivation on soil lacking soluble Pi, but rescued upon Pi fertilization or complementation with AtPAP25. Transcript profiling by quantitative RT-PCR indicated that Pi starvation signaling was attenuated in the atpap25 mutant. AtPAP25 exhibited near-optimal phosphatase activity with several phosphoproteins and phosphoamino acids as substrates. We hypothesize that AtPAP25 plays a key signaling role during Pi deprivation by functioning as a phosphoprotein phosphatase rather than as a non-specific scavenger of Pi from extracellular P-monoesters.


Assuntos
Fosfatase Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fósforo/metabolismo , Aclimatação , Fosfatase Ácida/genética , Adaptação Fisiológica , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glicoproteínas/metabolismo , Glicosilação , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
2.
J Exp Bot ; 63(18): 6531-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23125358

RESUMO

Orthophosphate (P(i)) is an essential but limiting macronutrient for plant growth. Extensive soil P reserves exist in the form of organic P (P(o)), which is unavailable for root uptake until hydrolysed by secretory acid phosphatases (APases). The predominant purple APase (PAP) isozymes secreted by roots of P(i)-deficient (-P(i)) Arabidopsis thaliana were recently identified as AtPAP12 (At2g27190) and AtPAP26 (At5g34850). The present study demonstrated that exogenous P(o) compounds such as glycerol-3-phosphate or herring sperm DNA: (i) effectively substituted for P(i) in supporting the P nutrition of Arabidopsis seedlings, and (ii) caused upregulation and secretion of AtPAP12 and AtPAP26 into the growth medium. When cultivated under -P(i) conditions or supplied with P(o) as its sole source of P nutrition, an atpap26/atpap12 T-DNA double insertion mutant exhibited impaired growth coupled with >60 and >30% decreases in root secretory APase activity and rosette total P(i) concentration, respectively. Development of the atpap12/atpap26 mutant was unaffected during growth on P(i)-replete medium but was completely arrested when 7-day-old P(i)-sufficient seedlings were transplanted into a -P(i), P(o)-containing soil mix. Both PAPs were also strongly upregulated on root surfaces and in shoot cell-wall extracts of -P(i) seedlings. It is hypothesized that secreted AtPAP12 and AtPAP26 facilitate the acclimation of Arabidopsis to nutritional Pi deficiency by: (i) functioning in the rhizosphere to scavenge P(i) from the soil's accessible P(o) pool, while (ii) recycling P(i) from endogenous phosphomonoesters that have been leaked into cell walls from the cytoplasm. Thus, AtPAP12 and AtPAP26 are promising targets for improving crop P-use efficiency.


Assuntos
Fosfatase Ácida/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicoproteínas/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Fosfatase Ácida/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Microscopia Confocal , Mutação , Compostos Organofosforados/metabolismo , Fósforo/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Reação em Cadeia da Polimerase , Quinazolinonas/metabolismo , RNA de Plantas/genética , Plântula/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA