Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 29(11-12): 322-332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36855326

RESUMO

The potential of human induced pluripotent stem cell differentiated cardiomyocytes (hiPSC-CMs) is greatly limited by their functional immaturity. Strong relationships exist between cardiomyocyte (CM) structure and function, leading many in the field to seek ways to mature hiPSC-CMs by culturing on biomimetic substrates, specifically those that promote alignment. However, these in vitro models have so far failed to replicate the alignment that occurs during cardiac differentiation. We show that engineered alignment, incorporated before and during cardiac differentiation, affects hiPSC-CM electrochemical coupling and mitochondrial morphology. We successfully engineer alignment in differentiating human induced pluripotent stem cells (hiPSCs) as early as day 4. We uniquely apply optical redox imaging to monitor the metabolic changes occurring during cardiac differentiation. We couple this modality with cardiac-specific markers, which allows us to assess cardiac metabolism in heterogeneous cell populations. The engineered alignment drives hiPSC-CM differentiation toward the ventricular compact CM subtype and improves electrochemical coupling in the short term, at day 14 of differentiation. Moreover, we observe the glycolysis to oxidative phosphorylation switch throughout differentiation and CM development. On the subcellular scale, we note changes in mitochondrial morphology in the long term, at day 28 of differentiation. Our results demonstrate that cellular alignment accelerates hiPSC-CM maturity and emphasizes the interrelation of structure and function in cardiac development. We anticipate that combining engineered alignment with additional maturation strategies will result in improved development of mature CMs from hiPSCs and strongly improve cardiac tissue engineering.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Células Cultivadas , Diferenciação Celular , Oxirredução
2.
Cancers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804958

RESUMO

RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in their levels are often observed in tumors with numerous oncogenic RBPs identified in recent years. Musashi1 (Msi1) is an RBP and stem cell gene that controls the balance between self-renewal and differentiation. High Msi1 levels have been observed in multiple tumors including glioblastoma and are often associated with poor patient outcomes and tumor growth. A comprehensive genomic analysis identified a network of cell cycle/division and DNA replication genes and established these processes as Msi1's core regulatory functions in glioblastoma. Msi1 controls this gene network via two mechanisms: direct interaction and indirect regulation mediated by the transcription factors E2F2 and E2F8. Moreover, glioblastoma lines with Msi1 knockout (KO) displayed increased sensitivity to cell cycle and DNA replication inhibitors. Our results suggest that a drug combination strategy (Msi1 + cell cycle/DNA replication inhibitors) could be a viable route to treat glioblastoma.

3.
Genome Biol ; 21(1): 195, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762776

RESUMO

BACKGROUND: RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS: We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS: SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Epigênese Genética , Feminino , Glioblastoma/etiologia , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Masculino , Camundongos , Neurogênese , Fenótipo , Prognóstico , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA