Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Chembiochem ; 20(7): 968-973, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30803119

RESUMO

Chemical Biology is the science of designing chemical tools to dissect and manipulate biology at different scales. It provides the fertile ground from which to address important problems of our society, such as human health and environment.


Assuntos
Biologia , Química , Humanos , Paris
2.
J Biol Chem ; 291(32): 16699-708, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27246854

RESUMO

The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cell death induction in neuroblastoma and glioblastoma cell lines in a PDZ·PDZ binding motifs-dependent manner, but the cellular partners of PTPN4 involved in cell protection are unknown. Here, we described the mitogen-activated protein kinase p38γ as a cellular partner of PTPN4. The main contribution to the p38γ·PTPN4 complex formation is the tight interaction between the C terminus of p38γ and the PDZ domain of PTPN4. We solved the crystal structure of the PDZ domain of PTPN4 bound to the p38γ C terminus. We identified the molecular basis of recognition of the C-terminal sequence of p38γ that displays the highest affinity among all endogenous partners of PTPN4. We showed that the p38γ C terminus is also an efficient inducer of cell death after its intracellular delivery. In addition to recruiting the kinase, the binding of the C-terminal sequence of p38γ to PTPN4 abolishes the catalytic autoinhibition of PTPN4 and thus activates the phosphatase, which can efficiently dephosphorylate the activation loop of p38γ. We presume that the p38γ·PTPN4 interaction promotes cellular signaling, preventing cell death induction.


Assuntos
Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Complexos Multienzimáticos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Transdução de Sinais/fisiologia , Morte Celular , Linhagem Celular Tumoral , Humanos , Proteína Quinase 12 Ativada por Mitógeno/genética , Complexos Multienzimáticos/genética , Proteína Tirosina Fosfatase não Receptora Tipo 4/genética
3.
Biochem J ; 473(14): 2239-48, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208170

RESUMO

Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70-90 Å (1 Å=0.1 nm) from the HasR ß-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Cristalografia por Raios X , Heme/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Ligação Proteica , Serratia marcescens/metabolismo , Transdução de Sinais/fisiologia
4.
Org Biomol Chem ; 15(1): 114-123, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27812586

RESUMO

Herein, we report a new process that enables the gram-scale production of a fully synthetic anti-cancer vaccine for human use. This therapeutic vaccine candidate, named MAG-Tn3, is a high-molecular-weight tetrameric glycopeptide encompassing carbohydrate tumor-associated Tn antigen clusters and peptidic CD4+ T-cell epitopes. The synthetic process involves (i) the stepwise solid-phase assembly of protected amino acids, including the high value-added Tn building blocks with only 1.5 equivalents, (ii) a single isolated intermediate, and (iii) the simultaneous deprotection of 36 hindered protective groups. The resulting MAG-Tn3 was unambiguously characterized using a combination of techniques, including a structural analysis by nuclear magnetic resonance spectroscopy. The four peptidic chains are flexible in solution, with a more constrained but extended conformation at the Tn3 antigen motif. Finally, we demonstrate that, when injected into HLA-DR1-expressing transgenic mice, this vaccine induces Tn-specific antibodies that mediate the killing of human Tn-positive tumor cells. These studies led to a clinical batch of the MAG-Tn3, currently investigated in breast cancer patients (phase I clinical trial). The current study demonstrates the feasibility of the multigram-scale synthesis of a highly pure complex glycopeptide, and it opens new avenues for the use of synthetic glycopeptides as drugs in humans.


Assuntos
Vacinas Anticâncer/química , Dendrímeros/química , Glicopeptídeos/química , Neoplasias/prevenção & controle , Vacinas Sintéticas/química , Sequência de Aminoácidos , Animais , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/síntese química , Vacinas Anticâncer/uso terapêutico , Dendrímeros/síntese química , Dendrímeros/uso terapêutico , Glicopeptídeos/síntese química , Glicopeptídeos/uso terapêutico , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/imunologia , Vacinas Sintéticas/uso terapêutico
5.
Biochem J ; 469(1): 159-68, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25942057

RESUMO

Phosphatase and tensin homologue (PTEN) and microtubule-associated serine threonine kinase 2 (MAST2) are key negative regulators of survival pathways in neuronal cells. The two proteins interact via the PDZ (PSD-95, Dlg1, Zo-1) domain of MAST2 (MAST2-PDZ). During infection by rabies virus, the viral glycoprotein competes with PTEN for interaction with MAST2-PDZ and promotes neuronal survival. The C-terminal PDZ-binding motifs (PBMs) of the two proteins bind similarly to MAST2-PDZ through an unconventional network of connectivity involving two anchor points. Combining stopped-flow fluorescence, analytical ultracentrifugation (AUC), microcalorimetry and NMR, we document the kinetics of interaction between endogenous and viral ligands to MAST2-PDZ as well as the dynamic and structural effects of these interactions. Viral and PTEN peptide interactions to MAST2-PDZ occur via a unique kinetic step which involves both canonical C-terminal PBM binding and N-terminal anchoring. Indirect effects induced by the PBM binding include modifications to the structure and dynamics of the PDZ dimerization surface which prevent MAST2-PDZ auto-association. Such an energetic communication between binding sites and distal surfaces in PDZ domains provides interesting clues for protein regulation overall.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Vírus da Raiva/química , Proteínas Virais/química , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Vírus da Raiva/metabolismo , Proteínas Virais/metabolismo
6.
J Biol Chem ; 289(18): 12647-56, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24627479

RESUMO

Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% ß-(1,3)-glucan, and 70% ß-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and ß-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is ß-(1,6)-glucans, which are large molecules composed of a linear ß-(1,6)-glucan chains with ß-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both ß-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.


Assuntos
Parede Celular/química , Dermatomicoses/microbiologia , Malassezia/química , Polissacarídeos/análise , Quitina/análise , Quitina/química , Cromatografia Líquida , Humanos , Espectroscopia de Ressonância Magnética , Polissacarídeos/química , Proteoglicanas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Glucanas/análise , beta-Glucanas/química
7.
Org Biomol Chem ; 12(24): 4218-32, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24836582

RESUMO

Synthetic functional mimics of the O-antigen from Shigella flexneri 2a are seen as promising vaccine components against endemic shigellosis. Herein, the influence of the polysaccharide non-stoichiometric di-O-acetylation on antigenicity is addressed for the first time. Three decasaccharides, representing relevant internal mono- and di-O-acetylation profiles of the O-antigen, were synthesized from a pivotal protected decasaccharide designed to tailor late stage site-selective O-acetylation. The latter was obtained via a convergent route involving the imidate glycosylation chemistry. Binding studies to five protective mIgGs showed that none of the acetates adds significantly to broad antibody recognition. Yet, one of the five antibodies had a unique pattern of binding. With IC50 in the micromolar to submicromolar range mIgG F22-4 exemplifies a remarkable tight binding antibody against diversely O-acetylated and non-O-acetylated fragments of a neutral polysaccharide of medical importance.


Assuntos
Antígenos O/biossíntese , Antígenos O/imunologia , Shigella flexneri/imunologia , Acetilação , Anticorpos Antibacterianos/imunologia , Configuração de Carboidratos , Antígenos O/química , Espectroscopia de Prótons por Ressonância Magnética
8.
J Biol Chem ; 287(32): 26932-43, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22700962

RESUMO

The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His(32) and Tyr(75), respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr(75)-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Heme/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Serratia marcescens/metabolismo , Análise Espectral Raman
9.
Biochim Biophys Acta ; 1824(3): 478-87, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22251893

RESUMO

The three-dimensional structures of the long-chain mammalian scorpion ß-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/ß fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Na(v) channels.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/química , Neurotoxinas/química , Venenos de Escorpião/química , Escorpiões/química , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cisteína/química , Dissulfetos , Escherichia coli/genética , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Neurotoxinas/genética , Neurotoxinas/isolamento & purificação , Neurotoxinas/toxicidade , Técnicas de Patch-Clamp , Prolina/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/toxicidade , Venenos de Escorpião/genética , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/toxicidade , Escorpiões/patogenicidade , Soluções , Eletricidade Estática , Transfecção
10.
PLoS Pathog ; 7(11): e1002372, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102815

RESUMO

A new polysaccharide secreted by the human opportunistic fungal pathogen Aspergillus fumigatus has been characterized. Carbohydrate analysis using specific chemical degradations, mass spectrometry, ¹H and ¹³C nuclear magnetic resonance showed that this polysaccharide is a linear heterogeneous galactosaminogalactan composed of α1-4 linked galactose and α1-4 linked N-acetylgalactosamine residues where both monosacharides are randomly distributed and where the percentage of galactose per chain varied from 15 to 60%. This polysaccharide is antigenic and is recognized by a majority of the human population irrespectively of the occurrence of an Aspergillus infection. GalNAc oligosaccharides are an essential epitope of the galactosaminogalactan that explains the universal antibody reaction due to cross reactivity with other antigenic molecules containing GalNAc stretches such as the N-glycans of Campylobacter jejuni. The galactosaminogalactan has no protective effect during Aspergillus infections. Most importantly, the polysaccharide promotes fungal development in immunocompetent mice due to its immunosuppressive activity associated with disminished neutrophil infiltrates.


Assuntos
Antígenos de Fungos/imunologia , Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Imunossupressores , Polissacarídeos/química , Polissacarídeos/imunologia , Animais , Anticorpos Antifúngicos/imunologia , Apoptose , Aspergillus fumigatus/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Parede Celular/imunologia , Reações Cruzadas , Epitopos , Feminino , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/fisiologia , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
J Am Chem Soc ; 134(50): 20533-43, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23171049

RESUMO

PTEN phosphatase is a tumor suppressor controlling notably cell growth, proliferation and survival. The multisite phosphorylation of the PTEN C-terminal tail regulates PTEN activity and intracellular trafficking. The dynamical nature of such regulatory events represents a crucial dimension for timing cellular decisions. Here we show that NMR spectroscopy allows reporting on the order and kinetics of clustered multisite phosphorylation events. We first unambiguously identify in vitro seven bona fide sites modified by CK2 and GSK3ß kinases and two new sites on the PTEN C-terminal tail. Then, monitoring the formation of transient intermediate phosphorylated states, we determine the sequence of these reactions and calculate their apparent rate constants. Finally, we assess the dynamic formation of these phosphorylation events induced by endogenous kinases directly in extracts of human neuroblastoma cells. Taken together, our data indicate that two cascades of events controlled by CK2 and GSK3ß occur independently on two clusters of sites (S380-S385 and S361-S370) and that in each cluster the reactions follow an ordered model with a distributive kinetic mechanism. Besides emphasizing the ability of NMR to quantitatively and dynamically follow post-translational modifications, these results bring a temporal dimension on the establishment of PTEN phosphorylation cascades.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Ressonância Magnética Nuclear Biomolecular , PTEN Fosfo-Hidrolase/química , Fosforilação
12.
Mol Microbiol ; 81(3): 705-16, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21651627

RESUMO

Bacteria release low-molecular-weight by-products called secondary metabolites, which contribute to bacterial ecology and biology. Whereas volatile compounds constitute a large class of potential infochemicals, their role in bacteria-bacteria interactions remains vastly unexplored. Here we report that exposure to gaseous ammonia released from stationary-phase bacterial cultures modifies the antibiotic resistance spectrum of all tested Gram-negative and Gram-positive bacteria. Using Escherichia coli K12 as a model organism, and increased resistance to tetracycline as the phenotypic read-out, we demonstrate that exposure to ammonia generated by the catabolism of l-aspartate increases the level of intracellular polyamines, in turn leading to modifications in membrane permeability to different antibiotics as well as increased resistance to oxidative stress. We show that the inability to import ammonia via the Amt gas channel or to synthesize polyamines prevent modification in the resistance profile of aerially exposed bacteria. We therefore provide here the first detailed molecular characterization of widespread, long-range chemical interference between physically separated bacteria.


Assuntos
Amônia/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli K12/fisiologia , Interações Microbianas , Ácido Aspártico/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/metabolismo , Oxidantes/toxicidade , Estresse Oxidativo , Poliaminas/metabolismo
13.
J Biol Chem ; 285(4): 2386-96, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19948732

RESUMO

A new HPLC method was developed to separate linear from beta(1-6)-branched beta(1-3)-glucooligosaccharides. This methodology has permitted the isolation of the first fungal beta(1-6)/beta(1-3)-glucan branching transglycosidase using a cell wall autolysate of Aspergillus fumigatus (Af). The encoding gene, AfBGT2 is an ortholog of AfBGT1, another transglycosidase of A. fumigatus previously analyzed (Mouyna, I., Hartland, R. P., Fontaine, T., Diaquin, M., Simenel, C., Delepierre, M., Henrissat, B., and Latgé, J. P. (1998) Microbiology 144, 3171-3180). Both enzymes release laminaribiose from the reducing end of a beta(1-3)-linked oligosaccharide and transfer the remaining chain to another molecule of the original substrate. The AfBgt1p transfer occurs at C-6 of the non-reducing end group of the acceptor, creating a kinked beta(1-3;1-6) linear molecule. The AfBgt2p transfer takes place at the C-6 of an internal group of the acceptor, resulting in a beta(1-3)-linked product with a beta(1-6)-linked side branch. The single Afbgt2 mutant and the double Afbgt1/Afbgt2 mutant in A. fumigatus did not display any cell wall phenotype showing that these activities were not responsible for the construction of the branched beta(1-3)-glucans of the cell wall.


Assuntos
Aspergillus fumigatus/enzimologia , Glucana Endo-1,3-beta-D-Glucosidase/isolamento & purificação , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , beta-Glucanas/isolamento & purificação , beta-Glucanas/metabolismo , Aspergillus fumigatus/genética , Western Blotting , Parede Celular/enzimologia , Celulases/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glicosilação , Mutação , Ressonância Magnética Nuclear Biomolecular , Fenótipo
14.
Glycobiology ; 21(1): 109-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21030536

RESUMO

The O-antigen (O-Ag), the polysaccharide part of the lipopolysaccharide, is the major target of the serotype-specific protective humoral response elicited upon host infection by Shigella flexneri, the main causal agent of the endemic form of bacillary dysentery. The O-Ag repeat units (RUs) of 12 S. flexneri serotypes share the tetrasaccharide backbone →2)-α-l-Rhap-(1 â†’ 2)-α-l-Rhap-(1 â†’ 3)-α-l-Rhap-(1 â†’ 3)-ß-d-GlcpNAc-(1→, with site-selective glucosylation(s) and/or O-acetylation defining the serotypes. To investigate the conformational basis of serotype specificity, we sampled conformational behaviors during 60 ns of molecular dynamic simulations for oligosaccharides representing three RUs of each one of the O-Ags corresponding to serotypes 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5b, X and Y, respectively. The calculated trajectories were checked by nuclear magnetic resonance (NMR) for 1a, 2a, 3a and 5a O-Ags. The simulations predict that in all O-Ags, but 1a and 1b, serotype-specific substitutions of the backbone do not induce any new backbone conformations compared with the linear type O-Ag Y, although they restrain locally the accessible conformational space. Moreover, the influence of any given substituent on the backbone is independent of the eventual presence of other substituents. Finally, only slight differences in conformational behavior between terminal and inner RUs were observed. These results suggest that the reported serotype-specificity of the protective immune response is not due to recognition of distinct backbone conformations, but to binding of the serotype-defining substituents in the O-Ag context. The gained knowledge is discussed in terms of impact on the development of a broad-serotype coverage vaccine.


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Vacinas contra Shigella/química , Shigella flexneri/imunologia , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Antígenos O/imunologia , Vacinas contra Shigella/imunologia
15.
Glycobiology ; 21(12): 1570-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21610193

RESUMO

Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties.


Assuntos
Anticorpos Monoclonais/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/química
16.
Biochim Biophys Acta ; 1794(11): 1591-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19631296

RESUMO

The crustacean toxin Cn5 from Centruroides noxius Hoffmann and peptide Css39.8 from Centruroides suffusus suffusus scorpion venoms are identical peptides, as confirmed by amino acid sequence of purified toxins and by DNA sequencing of the two respective cloned genes. Therefore in this communication they will be simply named Cn5. Cn5 is a 66 amino acid long peptide with four disulfide bridges, formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure). This peptide is non-toxic to mammals but deadly to arthropods (LD(50) 28.5 mg/g body weight of crayfish). Its three-dimensional structure was determined by NMR using a total of 965 meaningful distance constraints derived from the volume integration of the 2D NOESY spectra. The Cn5 structure displays a mixed alpha/beta fold stabilized by four disulfide bridges, with a kink induced by a cis-proline in its C-terminal part. Cn5 electrostatic surface is compared to that of Cn2 toxin toxic to mammals. The local differences produced by additional or substituted residues that would influence toxin selectivity towards mammalian or crustacean Na(+) channels are discussed.


Assuntos
Venenos de Escorpião/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Escorpiões , Especificidade da Espécie
17.
Harmful Algae ; 98: 101887, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33129465

RESUMO

Cyclic imine toxins exhibit fast acting neurotoxicity and lethality by respiratory arrest in mice explained by their potent antagonistic activity against muscular nicotinic acetylcholine receptors. We performed a survey of gymnodimine-A, 13-desmethyl spirolide-C, 13,19-didesmethyl spirolide-C, 20-methyl spirolide-G, pinnatoxin-A, pinnatoxin-G, portimine-A and 28-O-palmitoyl ester of pinnatoxin-G in 36 shellfish samples collected in coastal areas of 8 European countries using a microplate receptor binding assay and UPLC-MS/MS for toxin identification and quantification. The major toxins found in these samples were pinnatoxin-G, 20-methyl spirolide-G, 13-desmethyl spirolide-C, gymnodimine-A and portimine-A. Traces of 13,19-didesmethyl spirolide-C, pinnatoxin-A and 28-O-palmitoyl ester of pinnatoxin-G were also detected. The rapid death of mice was correlated with higher pinnatoxin-G concentrations in mussel digestive gland extracts injected intraperitoneally. Our survey included nontoxic control samples that were found to contain moderate to trace amounts of several cyclic imine toxins. Shellfish may bioaccumulate not only cyclic imine toxins but also a large number of acyl derivatives as a product of metabolic transformation of these neurotoxins. This is the first report in which portimine-A and 28-O-palmitoyl ester of pinnatoxin-G were detected in shellfish extracts from digestive glands of mussels collected in Ingril lagoon. The bioaccumulation of portimine-A is particularly of concern because it is cytotoxic and is able to induce apotosis. The mode of action of 28-O-palmitoyl ester of pinnatoxin-G was studied by receptor binding-assay and by two-electrode voltage clamp electrophysiology. The antagonistic behavior of the acylated pinnatoxin-G towards nicotinic acetylcholine receptor of muscle type is shown here for the first time. Since cyclic imine toxins are not regulated further monitoring of these emerging toxins is needed to improve evidence gathering of their occurrence in shellfish commercialized for human consumption in Europe given their potent antagonism against muscle and neuronal nicotinic acetylcholine receptors.


Assuntos
Ésteres , Toxinas Marinhas , Animais , Bioacumulação , Cromatografia Líquida , Europa (Continente) , Iminas , Toxinas Marinhas/análise , Camundongos , Frutos do Mar , Compostos de Espiro , Espectrometria de Massas em Tandem
18.
Toxicon ; 184: 158-166, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32569846

RESUMO

Cl13 is a toxin purified previously from the venom of the Mexican scorpion Centruroides limpidus. This toxin affects the function of voltage gated Na+-channels, human subtypes Nav1.4, Nav1.5 and Nav1.6 in a similar manner as other known ß-toxins from scorpion venoms. Here, we report a correction of the primary structure of Cl13, previously published. The peptide does contain 66 amino acids, but residue 58 is a tryptophan and the last C-terminal amino acid is an amidated lysine, instead of arginine. The main contribution of this communication is the determination of the 3D-structure of Cl13, by solution NMR, showing that Cl13 has the classical cysteine-stabilized α/ß (CSα/ß) folding. It has a triple stranded antiparallel beta sheet commonly present in scorpion sodium channel ß-toxins. In addition, we report and discuss a comparison of Cl13 structure with two other toxins (Cn2 and Css2) from scorpions of the same genus Centruroides, which shows important surface similarities with the structure reported here. Finally, the lack of neutralization of Cl13 toxin by two single-chain antibody fragments (scFvs), named LR and 10FG2, which are capable of neutralizing various toxins from Mexican scorpions, is revised. In particular, 10FG2 is capable of neutralizing toxins Cll1 and Cll2 of the same scorpion C. limpidus. The reasons why LR and 10FG2 are unable of neutralizing Cl13 toxin are discussed.


Assuntos
Venenos de Escorpião/química , Sequência de Aminoácidos , Animais , Cisteína , Espectroscopia de Ressonância Magnética , México , Escorpiões
19.
J Am Chem Soc ; 131(5): 1736-44, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19159260

RESUMO

The first step of heme acquisition by Gram-negative pathogenic bacteria through the so-called heme acquisition system, Has, requires delivery of the heme from the extracellular hemophore protein HasA to a specific outer membrane receptor, HasR. CRINEPT-TROSY NMR experiments in DPC micelles were here used to obtain information on the intermediate HasA-HasR complex in solution. A stable protein-protein adduct is detected both in the presence and in the absence of heme. Structural information on the complexed form of HasA is obtained from chemical shift mapping and statistical analysis of the spectral fingerprint of the protein NMR spectra obtained under different conditions. This approach shows the following: (i) only three different conformations are possible for HasA in solution: one for the isolated apoprotein, one for the isolated holoprotein, and one for the complexed protein, that is independent of the presence of the heme; (ii) the structure of the hemophore in the complex resembles the open conformation of the apoprotein; (iii) the surface contact area between HasA and HasR is independent of the presence of the heme, involving loop L1, loop L2, and the beta2-beta6 strands; (iv) upon complex formation the heme group is transferred from holoHasA to HasR.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Heme/química , Heme/metabolismo , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Conformação Proteica
20.
Glycobiology ; 18(1): 84-96, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17971386

RESUMO

Fungal glycosylinositolphosphoceramides (GIPCs) are involved in cell growth and fungal-host interactions. In this study, six GIPCs from the mycelium of the human pathogen Aspergillus fumigatus were purified and characterized using Q-TOF mass spectrometry and 1H, 13C, and 31P NMR. All structures have the same inositolphosphoceramide moiety with the presence of a C(18:0)-phytosphingosine conjugated to a 2-hydroxylated saturated fatty acid (2-hydroxy-lignoceric acid). The carbohydrate moiety defines two types of GIPC. The first, a mannosylated zwitterionic glycosphingolipid contains a glucosamine residue linked in alpha1-2 to an inositol ring that has been described in only two other fungal pathogens. The second type of GIPC presents an alpha-Manp-(1-->3)-alpha-Manp-(1-->2)-IPC common core. A galactofuranose residue is found in four GIPC structures, mainly at the terminal position via a beta1-2 linkage. Interestingly, this galactofuranose residue could be substituted by a choline-phosphate group, as observed only in the GIPC of Acremonium sp., a plant pathogen.


Assuntos
Aspergillus fumigatus/química , Glicoesfingolipídeos/química , Aspergillus fumigatus/metabolismo , Glicoesfingolipídeos/isolamento & purificação , Glicoesfingolipídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA