Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142542

RESUMO

Despite decades of effort in understanding pancreatic ductal adenocarcinoma (PDAC), there is still a lack of innovative targeted therapies for this devastating disease. Herein, we report the expression of apelin and its receptor, APJ, in human pancreatic adenocarcinoma and its protumoral function. Apelin and APJ protein expression in tumor tissues from patients with PDAC and their spatiotemporal pattern of expression in engineered mouse models of PDAC were investigated by immunohistochemistry. Apelin signaling function in tumor cells was characterized in pancreatic tumor cell lines by Western blot as well as proliferation, migration assays and in murine orthotopic xenograft experiments. In premalignant lesions, apelin was expressed in epithelial lesions whereas APJ was found in isolated cells tightly attached to premalignant lesions. However, in the invasive stage, apelin and APJ were co-expressed by tumor cells. In human tumor cells, apelin induced a long-lasting activation of PI3K/Akt, upregulated ß-catenin and the oncogenes c-myc and cyclin D1 and promoted proliferation, migration and glucose uptake. Apelin receptor blockades reduced cancer cell proliferation along with a reduction in pancreatic tumor burden. These findings identify the apelin signaling pathway as a new actor for PDAC development and a novel therapeutic target for this incurable disease.


Assuntos
Adenocarcinoma , Receptores de Apelina/metabolismo , Apelina/metabolismo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Ciclina D1/metabolismo , Glucose , Humanos , Camundongos , Oncogenes , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Neoplasias Pancreáticas
2.
Proc Natl Acad Sci U S A ; 111(42): E4494-503, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288766

RESUMO

LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders.


Assuntos
Dieta , Síndrome LEOPARD/genética , Obesidade/prevenção & controle , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Magreza/genética , Adipócitos/citologia , Tecido Adiposo/metabolismo , Adiposidade , Animais , Composição Corporal , Diferenciação Celular , Modelos Animais de Doenças , Metabolismo Energético , Insulina/metabolismo , Lentivirus/metabolismo , Lipólise , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Recombinação Genética
3.
Sci Adv ; 8(12): eabg9055, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333579

RESUMO

Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). Molecular mechanisms underlying liver lipogenesis are very complex and fine-tuned by chromatin dynamics and multiple key transcription factors. Here, we demonstrate that the nuclear factor HMGB1 acts as a strong repressor of liver lipogenesis. Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. Global transcriptome and functional analysis revealed that the deletion of Hmgb1 gene enhances LXRα and PPARγ activity. HMGB1 repression is not mediated through nucleosome landscape reorganization but rather via a preferential DNA occupation in a region carrying genes regulated by LXRα and PPARγ. Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. HMGB1 may constitute a new attractive option to therapeutically target the LXRα-PPARγ axis during NAFLD.

4.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910978

RESUMO

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tecido Adiposo , Animais , Humanos , Inflamação , Macrófagos , Camundongos , Camundongos Knockout
5.
J Physiol Biochem ; 74(4): 647-654, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30232707

RESUMO

To fight against metabolic disorders such as insulin resistance, new alimentary behaviors are developed. For instance, hyperproteined, gluten-free, or collagen-enriched diets could be preconized in order to reduce the consequences of obesity. In this aim, this study evaluates the potential effects of warm sea fish collagen peptides (Naticol®) on representative metabolic and inflammatory parameters. For that, male C57Bl6/J mice fed with either a chow- (CD) or high-fat diet (HFD) were submitted or not to specific collagen peptides in drinking water (4 g/kg bw/d) for 20 weeks. Weight, body composition, glucose tolerance, and insulin sensitivity were followed up. Effects of fish collagen peptides on various blood parameters reflecting the metabolism status were also measured (free fatty acids, triglycerides, cholesterol, hormones) together with adipocyte inflammation. Results showed that HFD-fed mice supplemented by fish collagen peptides exhibited a significant lower increase in body weight as soon as the twelfth week of treatment whereas no effect of the peptide was observed in CD fed mice. In line with this result, a weaker increase in fat mass in HFD-fed mice supplemented with Naticol® at both 9 and 18 weeks of treatment was also observed. In spite of this resistance to obesity promoted by fish collagen peptides treatment, no difference in glucose tolerance was found between groups whereas mice treated with Naticol® exhibited a lower basal glycemia. Also, even if no effect of the treatment on adipocyte lipolysis was found, a decrease of inflammatory cytokines was retrieved in collagen-supplemented group arguing for a potential better insulin sensitivity. Altogether, these results need to be completed but are the first describing a benefic role of warm sea fish collagen peptides in a context of metabolic disease paving the route for a potential utilization in human obesity-associated disorders.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Colágeno/uso terapêutico , Suplementos Nutricionais , Proteínas de Peixes da Dieta/uso terapêutico , Resistência à Insulina , Obesidade/terapia , Fragmentos de Peptídeos/uso terapêutico , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/química , Fármacos Antiobesidade/metabolismo , Apelina/agonistas , Apelina/genética , Apelina/metabolismo , Colágeno/efeitos adversos , Colágeno/química , Colágeno/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Proteínas de Peixes da Dieta/efeitos adversos , Proteínas de Peixes da Dieta/química , Proteínas de Peixes da Dieta/metabolismo , Regulação da Expressão Gênica , Intolerância à Glucose/etiologia , Intolerância à Glucose/imunologia , Intolerância à Glucose/prevenção & controle , Lipólise , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Paniculite/etiologia , Paniculite/imunologia , Paniculite/prevenção & controle , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Aumento de Peso
6.
Endocrine ; 60(1): 112-121, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29392617

RESUMO

PURPOSE: Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. METHODS: Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. RESULTS: Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. CONCLUSIONS: Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.


Assuntos
Apelina/farmacologia , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Triglicerídeos/metabolismo
7.
Nat Med ; 24(9): 1360-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061698

RESUMO

Sarcopenia, the degenerative loss of skeletal muscle mass, quality and strength, lacks early diagnostic tools and new therapeutic strategies to prevent the frailty-to-disability transition often responsible for the medical institutionalization of elderly individuals. Herein we report that production of the endogenous peptide apelin, induced by muscle contraction, is reduced in an age-dependent manner in humans and rodents and is positively associated with the beneficial effects of exercise in older persons. Mice deficient in either apelin or its receptor (APLNR) presented dramatic alterations in muscle function with increasing age. Various strategies that restored apelin signaling during aging further demonstrated that this peptide considerably enhanced muscle function by triggering mitochondriogenesis, autophagy and anti-inflammatory pathways in myofibers as well as enhancing the regenerative capacity by targeting muscle stem cells. Taken together, these findings revealed positive regulatory feedback between physical activity, apelin and muscle function and identified apelin both as a tool for diagnosis of early sarcopenia and as the target of an innovative pharmacological strategy to prevent age-associated muscle weakness and restore physical autonomy.


Assuntos
Envelhecimento/patologia , Apelina/sangue , Sarcopenia/sangue , Adenilato Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apelina/biossíntese , Receptores de Apelina/deficiência , Receptores de Apelina/metabolismo , Peso Corporal , Exercício Físico , Humanos , Cinética , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Biogênese de Organelas , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcopenia/patologia , Células Satélites de Músculo Esquelético/metabolismo
8.
Chem Biol Interact ; 258: 115-25, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27475863

RESUMO

Piceatannol is a hydroxylated derivative of resveratrol. While both dietary polyphenols coexist in edible plants and fruits, and share equivalent concentrations in several wines, the influence of piceatannol on adiposity has been less studied than that of resveratrol. Though resveratrol is now recognized to limit fat deposition in various obesity models, the benefit of its dietary supplementation remains under debate regarding human obesity treatment or prevention. The research for more potent resveratrol analogs is therefore still undergoing. This prompted us to compare various effects of piceatannol and resveratrol directly on human adipose tissue (hAT). Hydrogen peroxide release was measured by Amplex Red-based fluorescence in subcutaneous hAT samples from obese patients. Interactions of stilbenes with human amine oxidases and quinone reductase were assessed by radiometric methods, computational docking and electron paramagnetic resonance. Influences on lipogenic and lipolytic activities were compared in mouse adipocytes. Resveratrol and piceatannol inhibited monoamine oxidase (MAO) with respective IC50 of 18.5 and 133.7 µM, but not semicarbazide-sensitive amine oxidase (SSAO) in hAT. For both stilbenes, the docking scores were better for MAO than for SSAO. Piceatannol and resveratrol similarly hampered hydrogen peroxide detection in assays with and without hAT, while they shared pro-oxidant activities when incubated with purified quinone reductase. They exhibited similar dose-dependent inhibition of adipocyte lipogenic activity. Only piceatannol inhibited basal and stimulated lipolysis when incubated at a dose ≥100 µM. Thus, piceatannol exerted on fat cells dose-dependent effects similar to those of resveratrol, except for a stronger antilipolytic action. In this regard, piceatannol should be useful in limiting the lipotoxicity related to obesity when ingested or administered alone - or might hamper the fat mobilization induced by resveratrol when simultaneously administered with it.


Assuntos
Peróxido de Hidrogênio/metabolismo , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Monoaminoxidase/metabolismo , Estilbenos/farmacologia , Gordura Subcutânea/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adulto , Animais , Benzilaminas/metabolismo , Biocatálise/efeitos dos fármacos , Catalase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Humanos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Oxidantes/farmacologia , Resveratrol , Estilbenos/química , Gordura Subcutânea/efeitos dos fármacos , Tiramina/metabolismo
9.
PLoS One ; 8(11): e78874, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244380

RESUMO

Various studies have shown that eicosapentaenoic acid (EPA) has beneficial effects on obesity and associated disorders. Apelin, the ligand of APJ receptor also exerts insulin-sensitizing effects especially by improving muscle metabolism. EPA has been shown to increase apelin production in adipose tissue but its effects in muscle have not been addressed. Thus, the effects of EPA supplementation (36 g/kg EPA) in high-fat diet (HFD) (45% fat, 20% protein, 35% carbohydrate) were studied in mice with focus on muscle lipid metabolism and apelin/APJ expression. Compared with HFD mice, HFD+EPA mice had significantly less weight gain, fat mass, lower blood glucose, insulinemia and hepatic steatosis after 10 weeks of diet. In addition, EPA prevented muscle metabolism alterations since intramuscular triglycerides were decreased and ß-oxidation increased. In soleus muscles of HFD+EPA mice, apelin and APJ expression were significantly increased compared to HFD mice. However, plasma apelin concentrations in HFD and HFD+EPA mice were similar. EPA-induced apelin expression was confirmed in differentiated C2C12 myocytes but in this model, apelin secretion was also increased in response to EPA treatment. In conclusion, EPA supplementation in HFD prevents obesity and metabolic alterations in mice, especially in skeletal muscle. Since EPA increases apelin/APJ expression in muscle, apelin may act in a paracrine/autocrine manner to contribute to these benefical effects.


Assuntos
Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Ácido Eicosapentaenoico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Adipocinas , Animais , Apelina , Glicemia/metabolismo , Linhagem Celular , Gorduras na Dieta/efeitos adversos , Masculino , Camundongos , Músculo Esquelético/patologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA