RESUMO
The brain is highly enriched in long chain polyunsaturated fatty acids (LC-PUFAs) that display immunomodulatory properties in the brain. At the periphery, the modulation of inflammation by LC-PUFAs occurs through lipid mediators called oxylipins which have anti-inflammatory and pro-resolving activities when derived from n-3 LC-PUFAs and pro-inflammatory activities when derived from n-6 LC-PUFAs. However, whether a diet rich in LC-PUFAs modulates oxylipins and neuroinflammation in the brain has been poorly investigated. In this study, the effect of a dietary n-3 LC-PUFA supplementation on oxylipin profile and neuroinflammation in the brain was analyzed. Mice were given diets deficient or supplemented in n-3 LC-PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS) at adulthood. We first showed that dietary n-3 LC-PUFA supplementation induced n-3 LC-PUFA enrichment in the hippocampus and subsequently an increase in n-3 PUFA-derived oxylipins and a decrease in n-6 PUFA-derived oxylipins. In response to LPS, n-3 LC-PUFA deficient mice presented a pro-inflammatory oxylipin profile whereas n-3 LC-PUFA supplemented mice displayed an anti-inflammatory oxylipin profile in the hippocampus. Accordingly, the expression of cyclooxygenase-2 and 5-lipoxygenase, the enzymes implicated in pro- and anti-inflammatory oxylipin synthesis, was induced by LPS in both diets. In addition, LPS-induced pro-inflammatory cytokine increase was reduced by dietary n-3 LC-PUFA supplementation. These results indicate that brain n-3 LC-PUFAs increase by dietary means and promote the synthesis of anti-inflammatory derived bioactive oxylipins. As neuroinflammation plays a key role in all brain injuries and many neurodegenerative disorders, the present data suggest that dietary habits may be an important regulator of brain cytokine production in these contexts.
Assuntos
Ácidos Graxos Ômega-3/metabolismo , Oxilipinas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Dieta , Suplementos Nutricionais , Ácidos Graxos , Ácidos Graxos Ômega-3/fisiologia , Ácidos Graxos Ômega-6 , Ácidos Graxos Insaturados/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos AnimaisRESUMO
Within the central nervous system (CNS) the traditional role of microglia has been in brain infection and disease, phagocytosing debris and secreting factors to modify disease progression. This led to the concept of "resting" versus "activated" microglia. However, this is misleading because multiple phenotypic and morphological stages of microglia can influence neuronal structure and function in any condition and recent evidence extends their role to healthy brain homeostasis. The present work was thus aimed at reappraising the concept of morphofunctional activity of microglia in a context of peripheral acute immune challenge, where microglial activity is known to be modified, using the new state-of-the-art techniques available. To do so, mice were injected peripherally with lipopolysaccharide, a potent inducer of cerebral inflammation, and we assessed early cytokines production, phenotype, motility and morphology of microglial cells. Our results showed that LPS induced a widespread inflammatory response both peripherally and centrally, as revealed by the quantification of cytokines levels. We also found an alteration of microglial motility that was confirmed by in vivo studies showing an overall reduction of microglial processes length in the hippocampus of LPS-treated animals. Finally, analysis of various surface receptors expression revealed that LPS did not significantly impact microglial phenotype 2h after the injection but rather induced an increase of CD11b(+)/CD45(high) cells. These latter may be at the vasculature, at the CNS vicinity, or may have invaded the CNS.
Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/citologia , Microglia/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacosRESUMO
Omega-3 fatty acids (n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in Humans. However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. Active microglial engulfment of synapses regulates brain development. Impaired synaptic pruning is associated with several neurodevelopmental disorders. Here, we identify a molecular mechanism for detrimental effects of low maternal n-3 PUFA intake on hippocampal development in mice. Our results show that maternal dietary n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the rodent developing hippocampus, partly through the activation of 12/15-lipoxygenase (LOX)/12-HETE signaling, altering neuronal morphology and affecting cognitive performance of the offspring. These findings provide a mechanistic insight into neurodevelopmental defects caused by maternal n-3 PUFAs dietary deficiency.