Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anal Chem ; 92(20): 13880-13887, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32929962

RESUMO

Autoantibodies are key biomarkers in clinical diagnosis of autoimmune diseases routinely detected by enzyme-linked immunosorbent assays (ELISAs). However, the complexity of these assays is limiting their use in routine diagnostics. Fiber optic-surface plasmon resonance (FO-SPR) can overcome these limitations, but improved surface chemistries are still needed to guarantee detection of autoantibodies in complex matrices. In this paper, we describe the development of an FO-SPR immunoassay for the detection of autoantibodies in plasma samples from immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients. Hereto, hexahistidine-tagged recombinant ADAMTS13 (rADAMTS13-His6) was immobilized on nitrilotriacetic acid (NTA)-coated FO probes chelated by cobalt (Co(III)) and exposed to anti-ADAMTS13 autoantibodies. Initial studies were performed to optimize rADAMTS13-His6 immobilization and to confirm the specificity of the immunoassay for detection of anti-ADAMTS13 autoantibodies with FO-SPR. The performance of the immunoassay was then evaluated by comparing Co(III)- and nickel (Ni(II))-NTA stabilized surfaces, confirming the stable immobilization of the antigen in Co(III)-NTA-functionalized FO probes. A calibration curve was prepared with a dilution series of a cloned human anti-ADAMTS13 autoantibody in ADAMTS13-depleted plasma resulting in an average interassay coefficient of variation of 7.1% and a limit of detection of 0.24 ng/mL. Finally, the FO-SPR immunoassay was validated using seven iTTP patient plasma samples, resulting in an excellent correlation with an in-house-developed ELISA (r = 0.973). In summary, the specificity and high sensitivity in combination with a short time-to-result (2.5 h compared to 4-5 h for a regular ELISA) make the FO-SPR immunoassay a powerful assay for routine diagnosis of iTTP and with extension for any other autoimmune disease.


Assuntos
Autoanticorpos/sangue , Técnicas Biossensoriais/métodos , Cobre/química , Ácido Nitrilotriacético/química , Ressonância de Plasmônio de Superfície , Proteína ADAMTS13/química , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo , Tecnologia de Fibra Óptica , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunoensaio , Limite de Detecção , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Púrpura Trombocitopênica Trombótica/diagnóstico
2.
Anal Chem ; 89(6): 3664-3671, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222600

RESUMO

Monitoring the concentration of a therapeutic drug antibody, infliximab (IFX), is recommended for enhancing its efficacy in patients with inflammatory bowel disease (IBD). However, IFX concentrations are currently determined in patients' serum/plasma, which requires sample preparation from blood, hence hampering the turnaround time. In this paper, we present a short immunoassay (10 min) using a fiber-optic surface plasmon resonance (FO-SPR) biosensor for detection of IFX spiked in 100-fold diluted serum, plasma, and whole blood. The calculated limits of detection (LOD) based on calibration curves were 1.42, 1.00, and 1.34 ng/mL, respectively, which coincides with expected IFX concentrations in diluted samples from IBD patients. A linear correlation was established among different matrixes, indicating that the matrix effect was insignificant. The established point-of-care (POC) FO-SPR bioassay was also used to measure IFX in 100-fold diluted extracts of dried blood spots (DBS), and LOD achieved was below 2 ng/mL. Although DBS might be ideal for POC, this is the first report of using an SPR biosensor for measuring DBS samples. Finally, the POC FO-SPR immunoassay was validated by using matching serum and plasma samples from five IBD patients. A Pearson correlation of 0.968 was obtained between serum and plasma samples. IFX concentrations determined with FO-SPR were compared to a clinically validated enzyme-linked immunosorbent assay (ELISA), resulting in excellent Pearson correlation and intraclass correlation coefficient, both being 0.99 for serum and plasma samples. In conclusion, this paper demonstrates that our FO-SPR biosensor can be used as a true POC diagnostic tool for determining IFX concentrations in a variety of matrixes.


Assuntos
Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Tecnologia de Fibra Óptica , Doenças Inflamatórias Intestinais/sangue , Infliximab/sangue , Ressonância de Plasmônio de Superfície , Calibragem , Humanos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito
3.
Anal Chem ; 89(8): 4480-4487, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28318240

RESUMO

The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitive sensing capabilities in biomedical settings and the addition of an MOF coating opens the way for the sensing of volatile organic compounds (VOCs) in gaseous media. FO-SPR probes were homogeneously functionalized with ZIF-8 and ZIF-93 in each case using two different precursor solutions to obtain a sequential nucleation and growth phase. The difference in MOF nucleation and growth kinetics of the two solutions was directly monitored by the FO-SPR system. The two established MOF-FO-SPR sensors were then subjected to sensing experiments with several alcohol vapors to establish their sensing capabilities. Vapors with mPa partial pressures, ppm concentrations, could successfully be detected, e.g., an LOD of 2.5 ppm for methanol detection was acquired. The difference in recognition behavior of the hydrophobic ZIF-8 and more hydrophilic ZIF-93 recognition layers can be exploited to yield qualitative information regarding the vapor composition.

4.
Nanotechnology ; 28(21): 215301, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28375849

RESUMO

Merging surface plasmon resonance (SPR) to fiber optic (FO) technology has brought remarkable achievements in the field by offering attractive advantages over the conventional prism-based SPR platforms, such as simplicity, cost-effectiveness and miniaturization. However, the performance of the existing FO-SPR instruments mainly depends on the device surface condition and in particular on the structural aspect of the thin gold (Au) plasmonic film deposited on the FO substrate. In this work, a simple cost-effective colloidal lithography technique (CLT) was adapted and applied for the first time to the micrometer-sized FO substrate, to design end reflection-type FO-SPR sensors with periodic arrays of Au triangularly-shaped nanostructures on the Au mirror FO tip distal end. The nanopatterned FO-SPR sensor tips were afterwards subjected to refractometric measurements in a sucrose dilution series and subsequently compared with their non-patterned counterparts. It was observed that the spectral dips of the nanopatterned FO-SPR sensor tips were shifted towards longer wavelengths after CLT patterning. Moreover, the sensor sensitivity was improved with up to 25% compared to the conventional non-patterned FO-SPR devices. The obtained results represent important steps in the development of a new generation of FO-SPR sensors with improved performance, which can ultimately be used in various applications, ranging from food analysis and environmental monitoring, to health control and medical diagnosis.

5.
Sensors (Basel) ; 17(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758965

RESUMO

Abstract: Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery (Apium graveolens) is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM). In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA) was developed to determine different concentrations of celery DNA (1 pM-0.1 fM). The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd). The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement (R² = 0.96). In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

6.
Opt Express ; 22(17): 20223-38, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321232

RESUMO

In this study, a flexible tool to simulate the bulk optical properties of polydisperse spherical particles in an absorbing host medium is described. The generalized Mie solution for Maxwell's equations is consulted to simulate the optical properties for a spherical particle in an absorbing host, while polydispersity of the particle systems is supported by discretization of the provided particle size distributions. The number of intervals is optimized automatically in an efficient iterative procedure. The developed tool is validated by simulating the bulk optical properties for two aqueous nanoparticle systems and an oil-in-water emulsion in the visible and near-infrared wavelength range, taking into account the representative particle sizes and refractive indices. The simulated bulk optical properties matched closely (R2 ≥ 0.899) with those obtained by reference measurements.

7.
Nanotechnology ; 23(6): 065503, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248883

RESUMO

In this paper a fiber optic surface plasmon resonance (FO-SPR) sensor was used to analyze the melting process of DNA linked to silica nanoparticles. Real-time monitoring of a DNA melting process has rarely been studied using surface plasmon resonance (SPR), since most commercial SPR setups do not allow for dynamic and accurate temperature control above 50 °C. The FO-SPR sensor platform, with silica nanobead signal amplification, allows sensing inside a standard PCR thermocycler, which makes high resolution DNA melting curve analysis possible. This innovative combination was used to characterize the hybridization and melting events between DNA immobilized on the sensor surface and DNA probes on silica nanoparticles. At optimized hybridization conditions complementary DNA strands of different lengths could be distinguished. While the real-time FO-SPR analysis of DNA hybridization did not result in significant variances, the analysis of DNA melting determined the exact length of overlap and the matching Gibbs energy.


Assuntos
DNA/química , Nanopartículas/química , Hibridização de Ácido Nucleico , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Sequência de Bases , Sondas de DNA/química , Desenho de Equipamento , Desnaturação de Ácido Nucleico
8.
Biosens Bioelectron ; 192: 113549, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391067

RESUMO

We present an innovative multiplexing concept on a fiber optic surface plasmon resonance (FO-SPR) platform and demonstrate for the first time the simultaneous detection of two targets using the same FO sensor probe. Co(III)-NTA chemistry was used for oriented and stable co-immobilization of two different His6-tagged bioreceptors. T2C2 and MDTCS (i.e. fragments of the ADAMTS13 metalloprotease linked to the thrombotic thrombocytopenic purpura disorder) served as model system bioreceptors together with their respective targets (4B9 and II-1 antibodies). Gold nanoparticles were used here in an original way for discriminating the two targets in the same sample, in addition to their traditional signal amplification-role. After verifying the specificity of the selected model system, we studied the bioreceptor surface density and immobilization order. Innovative approach to lower the bioreceptor concentration below surface saturation resulted in an optimal detection of both targets, whereas the order of immobilization of the two bioreceptors did not give any significant difference. By sequentially immobilizing the T2C2 and MDTC bioreceptors, we established calibration curves in buffer and 100-fold diluted human blood plasma. This resulted in calculated limits of detection of 3.38 and 2.31 ng/mL in diluted plasma for 4B9 and II-1, respectively, indicating almost the same sensitivity as in buffer. Importantly, we also proved the applicability of the established calibration curves for quantifying the targets at random and more realistic ratios, directed by the design of experiments. This multiplexing study further expands the repertoire of applications on the FO-SPR biosensing platform, which together with its intrinsic features opens up great opportunities for diagnostics and life sciences.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Tecnologia de Fibra Óptica , Ouro , Humanos , Ressonância de Plasmônio de Superfície
9.
J Extracell Vesicles ; 10(4): e12059, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33664936

RESUMO

Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well-characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO-SPR) bioassay. In this context, EV binding on the FO-SPR probes was achieved only with EV-specific antibodies (e.g. anti-CD9 and anti-CD63) but not with non-specific anti-IgG. To increase detection sensitivity, we tested six different combinations of EV-specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti-CD9/Banti-CD81 and anti-CD63/Banti-CD9), resulting in 103 and 104 times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti-CD63/Banti-CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti-EpCAM antibody on the FO-SPR surface. The obtained results combined with FO-SPR real-time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis.


Assuntos
Bioensaio/métodos , Bioensaio/normas , Técnicas Biossensoriais/métodos , Calibragem , Vesículas Extracelulares/química , Anticorpos/química , Tecnologia de Fibra Óptica/métodos , Células HEK293 , Humanos , Células MCF-7 , Neoplasias/química , Neoplasias/diagnóstico , Plasma/química , Padrões de Referência , Ressonância de Plasmônio de Superfície/métodos
10.
Langmuir ; 26(3): 1594-7, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20050609

RESUMO

In order to accurately determine low numbers (1-100) of immobilized ssDNA molecules at a single, silica 250 nm nanoparticle surface, we hereby propose an integrated approach combining classic single molecule confocal microscopy (SMCM), that is, stepwise photobleaching of labeled ssDNA, with modified total internal reflection fluorescence microscopy (mTIRF). We postulate that SMCM alone is unable to exactly account for all labeled ssDNA because of inherent laser polarization effects; that is, perpendicularly oriented molecules to the sample surface are not (or are only slightly) susceptible to laser excitation and thus are invisible in a classic photobleaching experiment. The SMCM method accounts for at best two-thirds (68%) of the present ssDNA molecules. The principle of the mTIRF technique, which relies on the creation of highly inclined illumination combined with part of the laser remaining in normal Kohler illumination, enables accurate counting of SMCM invisible molecules. The combined approach proposed here circumvents the polarization issue and allows a complete single molecule counting on individual nanoparticles, fully in line with bulk measurements, as will be demonstrated.


Assuntos
DNA de Cadeia Simples/análise , DNA de Cadeia Simples/química , Nanopartículas/química , Microscopia de Fluorescência , Fotodegradação , Dióxido de Silício/química
11.
ACS Sens ; 5(4): 960-969, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32216277

RESUMO

Cobalt-nitrilotriacetic acid (Co(III)-NTA) chemistry is a recognized approach for oriented patterning of His6-tagged bioreceptors. We have applied the matching strategy for the first time on a surface plasmon resonance (SPR) platform, namely, the commercialized fiber optic (FO)-SPR. To accomplish this, His6-tagged bioreceptor (scFv-33H1F7) and its target PAI-1 were used as a model system, after scrutinizing the specificity of their interaction. When benchmarked to traditional carboxyl-based self-assembled monolayers (SAM), NTA allowed (1) more efficient FO-SPR surface coverage with bioreceptors compared with the former and (2) realization of thus far difficult-to-attain label-free bioassays on the FO-SPR platform in both buffer and 20-fold diluted human plasma. Moreover, Co(III)-NTA surface proved to be compatible with traditional gold nanoparticle-mediated signal amplification in the buffer as well as in 10-fold diluted human plasma, thus expanding the dynamic detection range to low ng/mL. Both types of bioassays revealed that scFv-33H1F7 immobilized on the FO-SPR surface using different concentrations (20, 10, or 5 µg/mL) had no impact on the bioassay sensitivity, accuracy, or reproducibility despite the lowest concentration effectively resulting in close to 20% fewer bioreceptors. Collectively, these results highlight the importance of Co(III)-NTA promoting the oriented patterning of bioreceptors on the FO-SPR sensor surface for securing robust and sensitive bioassays in complex matrices, both in label-free and labeled formats.


Assuntos
Técnicas Biossensoriais/métodos , Cobalto/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Humanos
12.
ACS Appl Mater Interfaces ; 11(7): 6759-6768, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30682241

RESUMO

DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10-23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme-inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.


Assuntos
DNA Catalítico/química , DNA de Cadeia Simples/análise , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , DNA de Cadeia Simples/química
13.
Drug Test Anal ; 10(3): 592-596, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28743169

RESUMO

Therapeutic drug monitoring of adalimumab is recommended to improve therapeutic outcome in patients with Crohn's disease. Performing an ELISA requires a rather long time-to-result and the necessity of collecting multiple samples to decrease the cost per adalimumab determination. In this study, we aim to develop and validate a rapid assay suitable for measuring a single adalimumab serum sample using a fiber-optic surface plasmon resonance (FO-SPR) based sensor. Therefore, we have immobilized MA-ADM28B8 as capture antibody on an FO-probe and conjugated MA-ADM40D8 as detecting antibody to gold nanoparticles. A dose-response curve ranging from 2.5 to 40 ng/mL adalimumab was obtained in 1/400 diluted serum. Serum samples of patients with adalimumab concentrations between 1 and 16 µg/mL were measured whereas the negative control, a sample spiked with infliximab at a concentration of 16 µg/mL, showed no significant signal. Using a pre-functionalized FO-probe, the technology requires less than 45 minutes for measuring a single sample. Comparison of measurements between the biosensor and the ELISA revealed an excellent agreement with a Pearson r coefficient of 0.99 and an intra-class coefficient of 0.99. The reduced assay time and the possibility of measuring a single sample are major advantages compared to the ELISA. The developed and validated optical adalimumab biosensor could be a valuable point-of-care diagnostic tool for adalimumab quantification in patients with Crohn's disease.


Assuntos
Adalimumab/sangue , Anti-Inflamatórios/sangue , Doença de Crohn/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Ressonância de Plasmônio de Superfície/métodos , Anticorpos Imobilizados/química , Doença de Crohn/sangue , Monitoramento de Medicamentos/economia , Humanos , Limite de Detecção , Ressonância de Plasmônio de Superfície/economia , Fatores de Tempo
14.
Biosens Bioelectron ; 79: 173-9, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706938

RESUMO

Infliximab (IFX) is a therapeutic monoclonal antibody used for treating patients with inflammatory bowel disease (IBD). In order to improve therapeutic outcomes it is recommended to monitor IFX trough concentrations. Although ELISA is currently widely used for this purpose, this method is not suitable for single patient testing. In this paper we describe the development of a fast bioassay for determining IFX concentration in serum using an in-house developed fiber-optic surface plasmon resonance (FO-SPR) biosensor. Studies were first conducted to optimize covalent immobilization of the IFX-specific antibody on the sensor surface as well as to select an optimal blocking buffer for restraining the non-specific binding. In order to reach clinically relevant sensitivity for detecting IFX in patients' serum, the SPR signal was amplified by employing gold nanoparticles functionalized with another set of IFX specific antibodies. Using the optimized sandwich bioassay, calibration curves were made with series of IFX concentrations spiked in buffer and 100-fold diluted serum, reaching the limit of detection of 0.3 and 2.2ng/ml, respectively. The established bioassay was finally validated using five IFX treated IBD patients samples. Results from the FO-SPR platform were compared with an in-house developed, clinically validated ELISA resulting in excellent Pearson and intraclass correlation coefficient of 0.998 and 0.983, respectively. Furthermore, the assay time of the FO-SPR platform was significantly reduced compared to ELISA, demonstrating the potential of this platform to be used as a point-of-care diagnostic tool for improving therapeutic outcomes of IBD patients.


Assuntos
Técnicas Biossensoriais/métodos , Doenças Inflamatórias Intestinais/sangue , Infliximab/sangue , Ressonância de Plasmônio de Superfície/métodos , Tecnologia de Fibra Óptica/métodos , Humanos , Testes Imediatos
15.
N Biotechnol ; 32(5): 473-84, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25858811

RESUMO

Although the phenomenon of surface plasmon resonance (SPR) is known for more than a century now, traditional prism-based SPR platforms have hardly escaped the research laboratories despite being recognized for the sensitive and specific performance. Significant efforts have been made over the last years to overcome their existing limitations by coupling the SPR phenomenon to the fiber optic (FO) technology. While this platform has been promoted as cost-effective and simpler alternative capable of handling label-free bioassays, quantification and real-time monitoring of biomolecular interactions, examples of its applicability in sensing and biosensing remain to date very limited. The FO-SPR system is still in development and requires further advancements for reaching the stability and sensitivity of the benchmark SPR systems. Among existing strategies for device improvement, those based on modifying the FO tips using nanomaterials are mostly studied. These small-scale objects provide a wide range of possibilities for alternating the architecture of the FO sensitive zone, enabling also unique effects such as localized SPR (LSPR). This mini-review summarizes the latest innovations in the fabrication procedures which use nanoparticles or other nanomaterials, aiming at FO-SPR technology performance improvements, as well as addition of new device features and functionalities.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Tecnologia de Fibra Óptica , Limite de Detecção , Ressonância de Plasmônio de Superfície
16.
Biosens Bioelectron ; 67: 394-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25212376

RESUMO

Different assays have been developed in the past years to meet point-of-care diagnostic tests requirements for fast and sensitive quantification and identification of targets. In this paper, we developed the ligation chain reaction (LCR) assay on the Fiber Optic Surface Plasmon Resonance (FO-SPR) platform, which enabled simultaneous quantification and cycle-to-cycle identification of DNA during amplification. The newly developed assay incorporated FO-SPR DNA melting assay, previously developed by our group. This required establishment of several assay parameters, including buffer ionic strength and thermal ramping speed as these parameters both influence the ligation enzyme performance and the hybridization yield of the gold nanoparticles (Au NPs) on the FO-SPR sensor. Quantification and identification of DNA targets was achieved over a wide concentration range with a calibration curve spanning 7 orders of magnitude and LOD of 13.75 fM. Moreover, the FO-SPR LCR assay could discriminate single nucleotide polymorphism (SNPs) without any post reaction analysis, featuring thus all the essential requirements of POC tests.


Assuntos
Técnicas Biossensoriais , DNA/química , Reação em Cadeia da Ligase , Polimorfismo de Nucleotídeo Único , DNA/genética , Tecnologia de Fibra Óptica , Ouro/química , Humanos , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico , Desnaturação de Ácido Nucleico/genética , Ressonância de Plasmônio de Superfície
17.
Biosens Bioelectron ; 25(4): 864-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19775884

RESUMO

In this paper we present a fiber optic surface plasmon resonance (SPR) sensor as a reusable, cost-effective and label free biosensor for measuring DNA hybridization and DNA-protein interactions. This is the first paper that combines the concept of a fiber-based SPR system with DNA aptamer bioreceptors. The fibers were sputtered with a 50nm gold layer which was then covered with a protein repulsive self-assembled monolayer of mixed polyethylene glycol (PEG). Streptavidin was attached to the PEG's carboxyl groups to serve as a versatile binding element for biotinylated ssDNA. The ssDNA coated SPR fibers were first evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a random 37-mer ssDNA. This single stranded DNA showed a 15 nucleotides overlap with the receptor ssDNA on the SPR fiber. A linear calibration curve was observed in 0.5-5 microM range. A negative control test did not reveal any significant non-specific binding, and the biosensor was easily regenerated. In a second assay the fiber optic SPR biosensor was functionalized with ssDNA aptamers against human immunoglobulin E. Limits of detection (2nM) and quantification (6nM) in the low nanomolar range were observed. The presented biosensor was not only useful for DNA and protein quantification purposes, but also to reveal the binding kinetics occurring at the sensor surface. The dissociation constant between aptamer and hIgE was equal to 30.9+/-2.9nM. The observed kinetics fully comply with most data from the literature and were also confirmed by own control measurements.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas de Ligação a DNA/química , DNA/análise , DNA/química , Tecnologia de Fibra Óptica/instrumentação , Hibridização In Situ/instrumentação , Mapeamento de Interação de Proteínas/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Proteínas de Ligação a DNA/análise , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA