Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 19(1): 57, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982496

RESUMO

BACKGROUND: Over the last two decades, nanotechnologies and the use of nanoparticles represent one of the greatest technological advances in many fields of human activity. Particles of titanium dioxide (TiO2) are one of the nanomaterials most frequently found in everyday consumer products. But, due in particular to their extremely small size, TiO2 nanoparticles (NPs) are prone to cross biological barriers and potentially lead to adverse health effects. The presence of TiO2 NPs found in human placentae and in the infant meconium has indicated unequivocally the capacity for a materno-fetal transfer of this nanomaterial. Although chronic exposure to TiO2 NPs during pregnancy is known to induce offspring cognitive deficits associated with neurotoxicity, the impact of a gestational exposure on a vital motor function such as respiration, whose functional emergence occurs during fetal development, remains unknown. RESULTS: Using in vivo whole-body plethysmographic recordings from neonatal mice, we show that a chronic exposure to TiO2 NPs during pregnancy alters the respiratory activity of offspring, characterized by an abnormally elevated rate of breathing. Correspondingly, using ex vivo electrophysiological recordings performed on isolated brainstem-spinal cord preparations of newborn mice and medullary slice preparations containing specific nuclei controlling breathing frequency, we show that the spontaneously generated respiratory-related rhythm is significantly and abnormally accelerated in animals prenatally exposed to TiO2 NPs. Moreover, such a chronic prenatal exposure was found to impair the capacity of respiratory neural circuitry to effectively adjust breathing rates in response to excitatory environmental stimuli such as an increase in ambient temperature. CONCLUSIONS: Our findings thus demonstrate that a maternal exposure to TiO2 NPs during pregnancy affects the normal development and operation of the respiratory centers in progeny.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Feminino , Humanos , Exposição Materna/efeitos adversos , Nanopartículas Metálicas/toxicidade , Camundongos , Nanopartículas/toxicidade , Gravidez , Respiração , Titânio/toxicidade
2.
Inorg Chem ; 59(9): 6232-6241, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324402

RESUMO

Here, we present a new crystallization process which, by combining microwaves and metal-induced devitrification, reduces both the time and the temperature of crystallization compared to other known methods. Titania crystallization initiates at a temperature as low as 125 °C within a few minutes of microwave radiation. Several cations induce this low-temperature crystallization, namely, Mn2+, Co2+, Ni2+, Al3+, Cu2+ and Zn2+. The crystallization mechanism is probed with electron microscopy, elemental mapping, single-particle inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning Auger mapping. These techniques show that the metal ion migration through the vitreous titania under microwave radiation occurs prior to crystallization. The crystalline particles are suspended in solution at the end of the treatment, avoiding particle aggregation and sintering. The crystalline suspensions are thus ready for processing into a material or employment in any other application. This combination of microwaves and metal-induced crystallization is applied here to TiO2, but we are investigating its application to other materials as an ecofriendly crystallization method.

3.
Inorg Chem ; 58(4): 2588-2598, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30707566

RESUMO

Mild hydrothermal conditions used for the treatment of titanate scrolled nanosheets (SNSs) suspensions (140 °C, 72 h) resulted in a large variety of anatase TiO2 anisotropic nano-objects depending on the studied parameters: influence of the medium pH and the presence or not of structuring agents (SAs). The present work shows that such a hydrothermal treatment of the SNSs, whatever the pH, resulted in the formation of single-crystalline anatase nanoneedles (NNs) with a specific crystal-elongation direction and a pH-dependent morphological anisotropy with aspect ratios (ARs) from 1 to 8. The SNSs suspensions were prepared by the conventional ultrabasic treatment of TiO2 with NaOH, followed by washing with HNO3 to different pH values. The crystal size of the anatase TiO2 obtained from this hydrothermal treatment increased with the pH of the suspensions, from 15 nm nanoparticles (NPs; AR = 1) at pH 2.2 to 500 nm NNs (AR = 8) at a pH 10.8 with a long axis systematically along the anatase [001] direction. Triethanol amine and oleic acid were used as SAs. Their respective influence, when acting on their own, had little influence on the control of the size, shape, or polydispersity of the NNs. However, their concomitant use provided a much better control of not only the size and polydispersity, which was strongly reduced, but also on (i) the shape and morphology giving rise to a controlled access to well-defined nanorods as opposed to nanoneedles and (ii) the crystal phase purity eliminating the few percent brookite still visible in the X-ray diffraction patterns of samples prepared in SA-free conditions. This approach offers an on-demand control over the production of anatase morphologies with defined aspect ratios.

4.
Inorg Chem ; 58(24): 16618-16628, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31802655

RESUMO

Superparamagnetic maghemite core-porous silica shell nanoparticles, γ-Fe2O3@SiO2 (FS), with 50 nm diameter and a 10 nm core, impregnated with paramagnetic complexes b-Ln ([Ln(btfa)3(H2O)2]) (where btfa = 4,4,4-trifluoro-l-phenyl-1,3-butanedione and Ln = Gd, Eu, and Gd/Eu), performing as promising trimodal T1-T2 MRI and optical imaging contrast agents, are reported. These nanosystems exhibit a high dispersion stability in water and no observable cytotoxic effects, witnessed by intracellular ATP levels. The structure and superparamagnetic properties of the maghemite core nanocrystals are preserved upon imbedding the b-Ln complexes in the shell. Hela cells efficiently and swiftly internalize the NPs into the cytosol, with no observable cytotoxicity below a concentration of 62.5 µg mL-1. These nanosystems perform better than the free b-Gd complex as T1 (positive) contrast agents in cellular pellets, while their performance as T2 (negative) contrast agents is similar to the FS. Embedding of the b-Eu complex in the silica pores endows the nanoparticles with strong luminescence properties. The impregnation of gadolinium and europium complexes in a 1:1 ratio afforded a trimodal nanoplatform performing as a luminescent probe and a double T1 and T2 MRI contrast agent even more efficient than b-Gd used on its own, as observed in cell-labeled imaging experiments and MRI cell pellets.

5.
Chemistry ; 24(27): 6917-6921, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29534315

RESUMO

Original titania nanocages are fabricated from sacrificial silica/polystyrene tetrapod-like templates. Here the template synthesis, titania deposition and nanocage development through polystyrene dissolution and subsequent silica etching are described. Discussion about the competitive deposition of titania on the biphasic templates is particularly emphasized. The morphology of the nanocages is investigated by TEM, STEM, EDX mapping and electron tomography.

6.
Anal Chem ; 86(15): 7311-9, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25006686

RESUMO

Assessing in situ nanoparticles (NPs) internalization at the level of a single cell is a difficult but critical task due to their potential use in nanomedicine. One of the main actual challenges is to control the number of internalized NPs per cell. To in situ detect, track, and above all quantify NPs in a single cell, we propose an approach based on a multimodal correlative microscopy (MCM), via the complementarity of three imaging techniques: fluorescence microscopy (FM), scanning electron microscopy (SEM), and ion beam analysis (IBA). This MCM was performed on single targeted individual primary human foreskin keratinocytes (PHFK) cells cultured and maintained on a specifically designed sample holder, to probe either dye-modified or bare NPs. The data obtained by both FM and IBA on dye-modified NPs were strongly correlated in terms of detection, tracking, and colocalization of fluorescence and metal detection. IBA techniques should therefore open a new field concerning specific studies on bare NPs and their toxicological impact on cells. Complementarity of SEM and IBA analyses provides surface (SEM) and in depth (IBA) information on the cell morphology as well as on the exact localization of the NPs. Finally, IBA not only provides in a single cell the in situ quantification of exogenous elements (NPs) but also that all the other endogenous elements and the subsequent variation of their homeostasis. This unique feature opens further insights in dose-dependent response analyses and adds the perspective of a better understanding of NPs behavior in biological specimens for toxicology or nanomedicine purposes.


Assuntos
Nanopartículas Metálicas , Microscopia/métodos , Óxidos/química , Análise de Célula Única
7.
Opt Express ; 22(9): 10139-50, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921718

RESUMO

We report experimentally and theoretically on the significant exaltation of optical forces on microparticles when they are partially coated by metallic nanodots and shined with laser light within the surface plasmon resonance. Optical forces on both pure silica particles and silica-gold raspberries are characterized using an optical chromatography setup to measure the variations of the Stokes drag versus laser beam power. Results are compared to the Mie theory prediction for both pure dielectric particles and core-shell ones with a shell described as a continuous dielectric-metal composite of dielectric constant determined from the Maxwell-Garnett approach. The observed quantitative agreement demonstrates that radiation pressure forces are directly related to the metal concentration on the microparticle surface and that metallic nanodots increase the magnitude of optical forces compared to pure dielectric particles of the same overall size, even at very low metal concentration. Behaving as "micro-sized nanoparticles", the benefit of microparticles coated with metallic nanodots is thus twofold: it significantly enhances optofluidic manipulation and motion at the microscale, and brings nanometric optical, chemical or biological capabilities to the microscale.

8.
Langmuir ; 30(44): 13411-21, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25330464

RESUMO

With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge obtained from this study is applicable to understand the role of interfaces in ternary nanocomposites with different combinations of nanofillers.


Assuntos
Silicatos de Alumínio/química , Compostos de Epóxi/química , Ouro/química , Nanocompostos/química , Argila , Espectroscopia de Ressonância de Spin Eletrônica , Tamanho da Partícula , Reologia , Propriedades de Superfície
9.
Sci Rep ; 14(1): 3295, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332121

RESUMO

This study aimed to explore the potential of metal oxides such as Titanate Scrolled Nanosheets (TNs) in improving the radiosensitivity of sarcoma cell lines. Enhancing the response of cancer cells to radiation therapy is crucial, and one promising approach involves utilizing metal oxide nanoparticles. We focused on the impact of exposing two human sarcoma cell lines to both TNs and ionizing radiation (IR). Our research was prompted by previous in vitro toxicity assessments, revealing a correlation between TNs' toxicity and alterations in intracellular calcium homeostasis. A hydrothermal process using titanium dioxide powder in an alkaline solution produced the TNs. Our study quantified the intracellular content of TNs and analyzed their impact on radiation-induced responses. This assessment encompassed PIXE analysis, cell proliferation, and transcriptomic analysis. We observed that sarcoma cells internalized TNs, causing alterations in intracellular calcium homeostasis. We also found that irradiation influence intracellular calcium levels. Transcriptomic analysis revealed marked disparities in the gene expression patterns between the two sarcoma cell lines, suggesting a potential cell-line-dependent nano-sensitization to IR. These results significantly advance our comprehension of the interplay between TNs, IR, and cancer cells, promising potential enhancement of radiation therapy efficiency.


Assuntos
Nanopartículas Metálicas , Sarcoma , Humanos , Cálcio , Óxidos , Perfilação da Expressão Gênica , Sarcoma/genética , Tolerância a Radiação
10.
ACS Appl Mater Interfaces ; 15(33): 39480-39493, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556291

RESUMO

Flexible strain sensors based on nanoparticle (NP) arrays show great potential for future applications such as electronic skin, flexible touchscreens, healthcare sensors, and robotics. However, even though these sensors can exhibit high sensitivity, they are usually not very stable under mechanical cycling and often exhibit large hysteresis, making them unsuitable for practical applications. In this work, strain sensors based on silica nanohelix (NH) arrays grafted with gold nanoparticles (AuNPs) can overcome these critical aspects. These 10 nm AuNPs are functionalized with mercaptopropionic acid (MPA) and different ratios of thiol-polyethylene glycol-carboxylic acid (HS-PEG7-COOH) to optimize the colloidal stability of the resulting NH@AuNPs nanocomposite suspensions, control their aggregation state, and tune the thickness of the insulating layer. They are then grafted covalently onto the surface of the NHs by chemical coupling. These nanomaterials exhibit a well-defined arrangement of AuNPs, which follows the helicity of the silica template. The modified NHs are then aligned by dielectrophoresis (DEP) between interdigitated electrodes on a flexible substrate. The flexibility, stability, and especially sensitivity of these sensors are then characterized by electromechanical measurements and scanning electron microscopy observations. These strain sensors based on NH@AuNPs nanocomposites are much more stable than those containing only nanoparticles and exhibit significantly reduced hysteresis and high sensitivity at very slight strains. They can retain their sensitivity even after 2 million consecutive cycles with virtually unchanged responsiveness. These improved performances come from their mechanical stability and the use of nanohelices as stable mechanical templates.

11.
Chemphyschem ; 13(1): 193-202, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22162413

RESUMO

A one-step, surfactant-assisted, seed-mediated method has been utilized for the growth of short gold nanorods with reasonable yield by modifying an established synthesis protocol. Among the various parameters that influence nanorod growth, the impact of the bromide counterion has been closely scrutinized. During this study it has been shown that, irrespective of its origin, the bromide counterion [cetyltrimethylammonium bromide (CTAB) or NaBr] plays a crucial role in the formation of nanorods in the sense that there is a critical [Br(-)]/[Au(3+)] ratio (around 200) to achieve nanorods with a maximum aspect ratio. Beyond this value, bromide can be considered as a poisoning agent unless shorter nanorods are required. The use of AgNO(3) helps in symmetry breaking for gold nanorod growth, whereas the bromide counterion controls the growth kinetics by selective adsorption on the facets of the growth direction. Thus, a proper balance between bromide ions and gold cations is also one of the necessary parameters for controlling the size of the gold nanorods; this has been discussed thoroughly. The results have been discussed based on their absorption spectra and finally shape evolution has been confirmed by TEM. Due to their efficient absorption in the near-IR region, these short nanorods were used in photothermal imaging of living COS-7 cells with improved signal-to-background ratios.

12.
Phys Med ; 94: 85-93, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007939

RESUMO

PURPOSE: Proton computed microtomography is a technique that reveals the inner content of microscopic samples. The density distribution of the material (in g·cm-3) is obtained from proton transmission tomography (STIM: Scanning Transmission Ion Microscopy) and the element content from X-ray emission tomography (PIXE: Particle Induced X-ray Emission). A precise quantification of chemical elements is difficult for thick samples, because of the variations of X-ray production cross-sections and of X-ray absorption. Both phenomena are at the origin of an attenuation of the measured X-ray spectra, which leads to an underestimation of the element content. Our aim is to quantify the accuracy of a specific correction method that we designed for thick samples. METHODS: In this study, we describe how the 3D variations in the mass density were taken into account in the reconstruction code, in order to quantify the correction according to the position of the proton beam and the position and aperture angle of the X-ray detector. Moreover, we assess the accuracy of the reconstructed densities using Geant4 simulations on numerical phantoms, used as references. RESULTS: The correction process was successfully applied and led, for the largest regions of interest (little affected by partial volume effects), to an accuracy ≤ 4% for phosphorus (compared to about 40% discrepancy without correction). CONCLUSION: This study demonstrates the accuracy of the correction method implemented in the tomographic reconstruction code for thick samples. It also points out some advantages offered by Geant4 simulations: i) they produce projection data that are totally independent of the inversion method used for the image reconstruction; ii) one or more physical processes (X-ray absorption, proton energy loss) can be artificially turned off, in order to precisely quantify the effect of the different phenomena involved in the attenuation of X-ray spectra.


Assuntos
Terapia com Prótons , Prótons , Algoritmos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Raios X
13.
NMR Biomed ; 24(10): 1361-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21387452

RESUMO

A knowledge of the spatial localization of cell vehicles used in gene therapy against glioma is necessary before launching therapy. For this purpose, MRI cell tracking is performed by labeling the cell vehicles with contrast agents. In this context, the goal of this study was to follow noninvasively the chemoattraction of therapeutic microglial cells to a human glioma model before triggering therapy. Silica nanoparticles grafted with gadolinium were used to label microglia. These vehicles, expressing constitutively the thymidine kinase suicide gene fused to the green fluorescent protein gene, were injected intravenously into human glioma-bearing nude mice. MRI was performed at 4.7 T to track noninvasively microglial accumulation in the tumor. This was followed by microscopy on brain slices to assess the presence in the glioma of the contrast agents, microglia and fusion gene through the detection of silica nanoparticles grafted with tetramethyl rhodamine iso-thiocyanate, 3,3'-dioctadecyloxacarbocyanine perchlorate and green fluorescent protein fluorescence, respectively. Finally, gancyclovir was administered systemically to mice. Human microglia were detectable in living mice, with strong negative contrast on T(2) *-weighted MR images, at the periphery of the glioma only 24 h after systemic injection. The location of the dark dots was identical in MR microscopy images of the extracted brains at 9.4 T. Fluorescence microscopy confirmed the presence of the contrast agents, exogenous microglia and suicide gene in the intracranial tumor. In addition, gancyclovir treatment allowed an increase in mice survival time. This study validates the MR tracking of microglia to a glioma after systemic injection and their use in a therapeutic strategy against glioma.


Assuntos
Rastreamento de Células/métodos , Glioma/terapia , Imageamento por Ressonância Magnética/métodos , Microglia/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Meios de Contraste/química , Modelos Animais de Doenças , Endocitose , Fluorescência , Gadolínio DTPA/química , Genes Reporter/genética , Genes Transgênicos Suicidas , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Microglia/metabolismo , Nanopartículas/química , Dióxido de Silício/química , Análise de Sobrevida , Timidina Quinase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
ACS Nano ; 15(9): 15328-15341, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34460229

RESUMO

Metal/semiconductor hetero-nanostructures are now considered as benchmark functional nanomaterials for many light-driven applications. Using laser-driven photodeposition to control growth of gold nanodots (NDs) onto CdSe/CdS dot-in-rods (DRs), we show that the addition of a dedicated hole scavenger (MeOH) is the cornerstone to significantly reduce to less than 3.5% the multiple-site nucleation and 2.5% the rate of gold-free DRs. This means, from a synthetic point of view, that rates up to 90% of single-tip DRs can be reproducibly achieved. Moreover, by systematically varying this hole scavenger concentration and the Au/DRs ratio on the one hand, and the irradiation intensity and the time exposure on the other hand, we explain how gold deposition switches from multisite to single-tipped and how the growth and final size of the single photodeposited ND can be controlled. A model also establishes that the results obtained based on these different varying conditions can be merged onto a single "master behavior" that summarizes and predicts the single-tip gold ND growth onto the CdSe/CdS DRs. We eventually use data from the literature on growth of platinum NDs onto CdS nanorods by laser-deposition to extend our investigation to another metal of major interest and strengthen our modeling of single metallic ND growth onto II-VI semiconducting nanoparticles. This demonstrated strategy can raise a common methodology in the synthesis of single-tip semiconductor-metal hybrid nanoheterodimers (NHDs), leading to advanced nanoparticles architectures for applications in areas as different as photocatalysis, hydrogen production, photovoltaics, and light detection.

15.
ACS Nano ; 15(2): 2947-2961, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33528241

RESUMO

In order to circumvent the usual nucleation of randomly distributed tiny metallic dots photodeposited on TiO2 nanoparticles (NPs) induced by conventional UV lamps, we propose to synthesize well-controlled nanoheterodimers (NHDs) using lasers focused inside microfluidic reactors to strongly photoactivate redox reactions of active ions flowing along with nanoparticles in water solution. Since the flux of photons issued from a focused laser may be orders of magnitude higher than that reachable with classical lamps, the production of electron-hole pairs is tremendously increased, ensuring a large availability of carriers for the deposition and favoring the growth of a single metallic dot as compared to secondary nucleation events. We show that the growth of single silver or gold nanodots can be controlled by varying the beam intensity, the concentration of the metallic salt, and the flow velocity inside the microreactor. The confrontation to a build-in model of the metallic nanodot light-induced growth onto the surface of TiO2 NPs shows the emergence of a predictable "master behavior" on which individual growths obtained from various tested conditions do collapse. We also characterized the associated quantum yield. Eventually, we successfully confronted our model to growth data from the literature in the case of silver on TiO2 and gold on II-VI semiconducting NPs triggered by UV lamps. It shows that for the photosynthesis of NHDs the efficiency of the electron-hole pair production rate matters much more than the number of pairs produced and that the use of laser light can provide a photodeposition-based synthesis at the nanoscale.

16.
J Phys Chem Lett ; 11(17): 7232-7238, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787235

RESUMO

The synthesis of CdSe/CdS core/shell nanoparticles was revisited with the help of a causal inference machine learning framework. The tadpole morphology with 1-2 tails was experimentally discovered. The causal inference model revealed the causality between the oleic acid (OA), octadecylphosphonic acid (ODPA) ligands, and the detailed tail shape of the tadpole morphology. Further, with the identified causality, a neural network was provided to predict and directly lead to the original experimental discovery of new tadpole-shaped structures. An entropy-driven nucleation theory was developed to understand both the ligand and temperature dependent experimental data and the causal inference from the machine learning framework. This work provided a vivid example of how the artificial intelligence technology, including machine learning, could benefit the materials science research for the discovery.

17.
ACS Nano ; 14(8): 10346-10358, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806030

RESUMO

Ligand-induced chirality in asymmetric CdSe/CdS core-shell nanocrystals (NCs) has been extensively applied in chiral biosensors, regioselective syntheses and assemblies, circularly polarized luminescence (CPL), and chiroptic-based devices due to their excellent physiochemical properties, such as the tunable quantum confinement effects, surface functionality, and chemical stability. Herein, we present CdSe/CdS NCs with various morphologies such as nanoflowers, tadpoles, and dot/rods (DRs) with chirality induced by surface chiral ligands. The observed circular dichroism (CD) and CPL activities are closely associated with the geometrical characteristics of the nanostructures, such as the shell thickness and the aspect ratio of the CdSe/CdS NCs. Furthermore, in situ observations of the growth of tadpoles with a single tail indicate that the CD response is mainly attributed to the CdS shell, which has a maximum tail length of ∼45 nm (approximately λ/10 of the incident light wavelength). On the other hand, the CPL activity is only related to the CdSe core, and the activity benefits from a thin CdS shell with a relatively high photoluminescence quantum yield (QY). Further theoretical models demonstrated the aspect-ratio-dependent g-factor and QY variations in these asymmetric nanostructures. These findings provide insights into not only the asymmetric synthesis of CdSe/CdS NCs, but also the rational design of CdSe/CdS nanostructures with tunable CD and CPL activities.


Assuntos
Compostos de Cádmio , Nanoestruturas , Compostos de Selênio , Animais , Larva , Ligantes , Sulfetos
18.
J Am Chem Soc ; 131(24): 8642-8, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19530733

RESUMO

Oligoamide sequences comprised of both 8-amino-2-quinolinecarboxylic acid "Q" and 6-aminomethyl-2-pyridinecarboxylic acid "P" have been synthesized. It was found that the aliphatic amine of P greatly facilitates amide couplings, as opposed to the aromatic amine of Q, which enabled us to prepare sequences having up to 40 units. The conformation and conformational stability of these oligomers were characterized in the solid state using X-ray crystallography and in solution using NMR and various chromatographic techniques. Q(n) oligomers adopt very stable helically folded conformations whereas P(n) oligomers do not fold and impart conformational preferences distinct from those of Q units. When a P(n) segments is attached at the end of a Q(4) segment, a couple P units appear to follow the folding pattern imposed by the Q(n) segment, but P units remote from the Q(n) segment do not fold. When a P(n) segment is inserted between two Q(4) segments, the P(n) segment adopts the canonical helical conformation imposed by the Q units at least up to two full helical turns (n = 5). However, the overall stability of the helix tends to decrease as the number of P units increases. When noncontiguous P units separated by Q(4) segments are incorporated in a sequence, they all adopt the helical conformation imposed by Q monomers and the overall helix stability increases when helix length increases. For example, a 40mer with a sequence (PQ(4))(8) folds into a rod-like helix spanning over 16 turns with a length of 5.6 nm. This investigation thus demonstrates that remarkably long (nanometers) yet well-defined foldamers can be efficiently synthesized stepwise and that their helical stability may be continuously tuned upon controlling the ratio and sequence of P and Q monomers.


Assuntos
Amidas/química , Nanopartículas/química , Ácidos Carboxílicos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Piridinas/química , Quinolinas/química
19.
Phys Med ; 65: 172-180, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31494371

RESUMO

Proton imaging can be carried out on microscopic samples by focusing the beam to a diameter ranging from a few micrometers down to a few tens of nanometers, depending on the required beam intensity and spatial resolution. Three-dimensional (3D) imaging by tomography is obtained from proton transmission (STIM: Scanning Transmission Ion Microscopy) and/or X-ray emission (PIXE: Particle Induced X-ray Emission). In these experiments, the samples are dehydrated for under vacuum analysis. In situ quantification of nanoparticles has been carried out at CENBG in the frame of nanotoxicology studies, on cells and small organisms used as biological models, especially on Caenorhabditis elegans (C. elegans) nematodes. Tomography experiments reveal the distribution of mass density and chemical content (in g.cm-3) within the analyzed volume. These density values are obtained using an inversion algorithm. To investigate the effect of this data reduction process, we defined different numerical phantoms, including a (dehydrated) C. elegans phantom whose geometry and density were derived from experimental data. A Monte Carlo simulation based on the Geant4 toolkit was developed. Using different simulation and reconstruction conditions, we compared the resulting tomographic images to the initial numerical reference phantom. A study of the relative error between the reconstructed and the reference images lead to the result that 20 protons per shot can be considered as an optimal number for 3D STIM imaging. Preliminary results for PIXE tomography are also presented, showing the interest of such numerical phantoms to produce reference data for future studies on X-ray signal attenuation in thick samples.


Assuntos
Imageamento Tridimensional , Microscopia , Método de Monte Carlo , Prótons , Animais , Caenorhabditis elegans , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
20.
Sci Rep ; 9(1): 12048, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427624

RESUMO

In recent, the quantum yield (QY) and stability of green quantum dots (QDs) have been significantly improved. However, most of the progresses were achieved by using alloyed QDs, and the control of green emission QDs still remains challenging. Herein, we report a novel method for synthesizing thick-shell structure quantum dots (TSQDs) with saturated green-emitting where tri-n-octylphosphine (TOP) was used as both ligand and solvent to extract the redundant ions from the QDs surface and remove the lattice imperfections before any surface inorganic layer-by-layer coating. The as-prepared TSQDs demonstrate enhanced luminescent properties including high QY reaching up to 75%, full width at half maximum (FWHM) remaining close to 26 nm and tunable precise emission properties (532 nm), which can be utilized to perform 91% of the International Telecommunication Union (ITU) Recommendation BT. 2020 (Rec. 2020) for high definition and color gamut displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA