Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mar Drugs ; 18(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322429

RESUMO

A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.


Assuntos
Antineoplásicos/metabolismo , Basidiomycota/enzimologia , Proteínas Fúngicas/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Antineoplásicos/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/farmacologia , Humanos , Fontes Hidrotermais/microbiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Filogenia , Policetídeo Sintases/isolamento & purificação , Policetídeo Sintases/farmacologia , Policetídeos/farmacologia , Especificidade por Substrato , Células THP-1 , Microbiologia da Água
2.
Plant Cell ; 23(3): 1124-37, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21447792

RESUMO

Peroxidases have been shown to be involved in the polymerization of lignin precursors, but it remains unclear whether laccases (EC 1.10.3.2) participate in constitutive lignification. We addressed this issue by studying laccase T-DNA insertion mutants in Arabidopsis thaliana. We identified two genes, LAC4 and LAC17, which are strongly expressed in stems. LAC17 was mainly expressed in the interfascicular fibers, whereas LAC4 was expressed in vascular bundles and interfascicular fibers. We produced two double mutants by crossing the LAC17 (lac17) mutant with two LAC4 mutants (lac4-1 and lac4-2). The single and double mutants grew normally in greenhouse conditions. The single mutants had moderately low lignin levels, whereas the stems of lac4-1 lac17 and lac4-2 lac17 mutants had lignin contents that were 20 and 40% lower than those of the control, respectively. These lower lignin levels resulted in higher saccharification yields. Thioacidolysis revealed that disrupting LAC17 principally affected the deposition of G lignin units in the interfascicular fibers and that complementation of lac17 with LAC17 restored a normal lignin profile. This study provides evidence that both LAC4 and LAC17 contribute to the constitutive lignification of Arabidopsis stems and that LAC17 is involved in the deposition of G lignin units in fibers.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Lacase/genética , Lignina/biossíntese , Caules de Planta/metabolismo , Feixe Vascular de Plantas/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Inflorescência/genética , Inflorescência/metabolismo , Lacase/isolamento & purificação , Lacase/metabolismo , Lignina/análise , Lignina/genética , Mutação , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Feixe Vascular de Plantas/enzimologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
3.
Plant Physiol ; 160(3): 1204-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22984124

RESUMO

Monolignol glucosides are thought to be implicated in the lignin biosynthesis pathway as storage and/or transportation forms of cinnamyl alcohols between the cytosol and the lignifying cell walls. The hydrolysis of these monolignol glucosides would involve ß-glucosidase activities. In Arabidopsis (Arabidopsis thaliana), in vitro studies have shown the affinity of ß-GLUCOSIDASE45 (BGLU45) and BGLU46 for monolignol glucosides. BGLU45 and BGLU46 genes are expressed in stems. Immunolocalization experiments showed that BGLU45 and BGLU46 proteins are mainly located in the interfascicular fibers and in the protoxylem, respectively. Knockout mutants for BGLU45 or BGLU46 do not have a lignin-deficient phenotype. Coniferin and syringin could be detected by ultra-performance liquid chromatography-mass spectrometry in Arabidopsis stems. Stems from BGLU45 and BGLU46 mutant lines displayed a significant increase in coniferin content without any change in coniferyl alcohol, whereas no change in syringin content was observed. Other glucosylated compounds of the phenylpropanoid pathway were also deregulated in these mutants, but to a lower extent. By contrast, BGLU47, which is closely related to BGLU45 and BGLU46, is not implicated in either the general phenylpropanoid pathway or in the lignification of stems and roots. These results confirm that the major in vivo substrate of BGLU45 and BGLU46 is coniferin and suggest that monolignol glucosides are the storage form of monolignols in Arabidopsis, but not the direct precursors of lignin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Celulases/metabolismo , Lignina/metabolismo , Caules de Planta/enzimologia , Proteínas de Arabidopsis/genética , Celulases/genética , Cinamatos/metabolismo , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glucosídeos/metabolismo , Metaboloma/genética , Mutagênese Insercional/genética , Mutação/genética , Especificidade de Órgãos/genética , Fenilpropionatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Caules de Planta/genética , Transporte Proteico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mar Biotechnol (NY) ; 25(4): 519-536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354383

RESUMO

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H. werneckii, successfully cloned and overexpressed in a bacterial host, which possesses higher affinity for bromide (Km = 26 µM) than chloride (Km = 237 mM). The enzyme was biochemically characterized, and we have evaluated its potential for biocatalysis by determining its stability and tolerance in organic solvents. We also describe its potential three-dimensional structure by building a model using the AlphaFold 2 artificial intelligence tool. This model shows some conservation of the 3D structure of the active site compared to the vanadium chloroperoxidase from C. inaequalis but it also highlights some differences in the active site entrance and the volume of the active site pocket, underlining its originality.


Assuntos
Ascomicetos , Cloreto Peroxidase , Exophiala , Fontes Hidrotermais , Cloreto Peroxidase/genética , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Exophiala/metabolismo , Saccharomyces cerevisiae/metabolismo , Vanádio/metabolismo , Inteligência Artificial , Ascomicetos/genética
5.
Environ Sci Pollut Res Int ; 23(4): 3036-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26310699

RESUMO

The present study investigates the effect of metals on the secretion of enzymes from 12 fungal strains maintained in liquid cultures. Hydrolases (acid phosphatase, ß-glucosidase, ß-galactosidase, and N-acetyl-ß-glucosaminidase) and ligninolytic oxidoreductases (laccase, Mn, and lignin peroxidases) activities, as well as biomass production, were measured in culture fluids from fungi exposed to Cu or Cd. Our results showed that all fungi secreted most of the selected hydrolases and that about 50% of them produced a partial oxidative system in the absence of metals. Then, exposure of fungi to metals led to the decrease in biomass production. At the enzymatic level, Cu and Cd modified the secretion profiles of soil fungi. The response of hydrolases to metals was contrasted and complex and depended on metal, enzyme, and fungal strain considered. By contrast, the metals always stimulated the activity of ligninolytic oxidoreductases in fungal strains. In some of them, oxidoreductases were specifically produced following metal exposure. Fungal oxidoreductases provide a more generic response than hydrolases, constituting thus a physiological basis for their use as biomarkers of metal exposure in soils.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Fungos/enzimologia , Hidrolases/metabolismo , Oxirredutases/metabolismo , Poluentes do Solo/toxicidade , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/efeitos dos fármacos , Basidiomycota/enzimologia , Basidiomycota/crescimento & desenvolvimento , Biomassa , Ecotoxicologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo
6.
Chemosphere ; 82(3): 340-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980042

RESUMO

The relationship between the expression of extracellular enzymatic system and a metal stress is scarce in fungi, hence limiting the possible use of secretion profiles as tools for metal ecotoxicity assessment. In the present study, we investigated the effect of Zn, Cu, Pb and Cd, tested alone or in equimolar cocktail, on the secretion profiles at enzymatic and protein levels in Trametesversicolor. For that purpose, extracellular hydrolases (acid phosphatase, ß-glucosidase, ß-galactosidase and N-acetyl-ß-glucosaminidase) and ligninolytic oxidases (laccase, Mn-peroxidase) were monitored in liquid cultures. Fungal secretome was analyzed by electrophoresis and laccase secretion was characterized by western-blot and mass spectrometry analyses. Our results showed that all hydrolase activities were inhibited by the metals tested alone or in cocktail, whereas oxidase activities were specifically stimulated by Cu, Cd and metal cocktail. At protein level, metal exposure modified the electrophoretic profiles of fungal secretome and affected the diversity of secreted proteins. Two laccase isoenzymes, LacA and LacB, identified by mass spectrometry were differentially glycosylated according to the metal exposure. The amount of secreted LacA and LacB was strongly correlated with the stimulation of laccase activity by Cu, Cd and metal cocktail. These modifications of extracellular enzymatic system suggest that fungal oxidases could be used as biomarkers of metal exposure.


Assuntos
Monitoramento Ambiental/métodos , Metais/toxicidade , Poluentes do Solo/toxicidade , Trametes/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Crescimento e Desenvolvimento/efeitos dos fármacos , Hidrolases/metabolismo , Lacase/metabolismo , Peroxidases/metabolismo , Trametes/enzimologia , Trametes/metabolismo
7.
Phytochemistry ; 71(14-15): 1673-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20615517

RESUMO

In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H(2)O(2). This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed.


Assuntos
Arabidopsis/enzimologia , Lignina/metabolismo , Peroxidases/metabolismo , Fenóis/análise , Fenilpropionatos/análise , Arabidopsis/metabolismo , Eletroforese em Gel de Poliacrilamida , Lignina/química , Fenóis/metabolismo , Fenilpropionatos/metabolismo , Polimerização
9.
Microbiology (Reading) ; 145 ( Pt 9): 2543-2548, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10517607

RESUMO

Glycine betaine is mostly known as an osmoprotectant. It is involved in the osmotic adaptation of eukaryotic and bacterial cells, and accumulates up to 1 M inside cells subjected to an osmotic upshock. Since, like other osmolytes, it can act as a protein stabilizer, its thermoprotectant properties were investigated. In vitro, like protein chaperones such as DnaK, glycine betaine and choline protect citrate synthase against thermodenaturation, and stimulate its renaturation after urea denaturation. In vivo, the internal concentration of glycine betaine is neither increased nor decreased after heat shock (this contrasts with a massive increase after osmotic upshock). However, even in exponential-phase bacteria grown in usual minimal salts media, the internal glycine betaine concentration attains levels (around 50 mM) which can protect proteins against thermodenaturation in vitro. Furthermore, glycine betaine and choline restore the viability of a dnaK deletion mutant at 42 degrees C, suggesting that glycine betaine not only acts as a thermoprotectant in vitro, but also acts as a thermoprotectant for Escherichia coli cells in vivo.


Assuntos
Betaína/farmacologia , Colina/farmacologia , Proteínas de Escherichia coli , Escherichia coli/fisiologia , Resposta ao Choque Térmico , Betaína/metabolismo , Colina/metabolismo , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mutação , Dobramento de Proteína , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA