Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nanotechnology ; 34(41)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37413972

RESUMO

Rolled-up tubes based on released III-V heterostructures have been extensively studied and established as optical resonators in the last two decades. In this review, we discuss how light emitters (quantum wells and quantum dots) are influenced by the inherently asymmetric strain state of these tubes. Therefore, we briefly review whispering gallery mode resonators built from rolled-up III-V heterostructures. The curvature and its influence over the diameter of the rolled-up micro- and nanotubes are discussed, with emphasis on the different possible strain states that can be produced. Experimental techniques that access structural parameters are essential to obtain a complete and correct image of the strain state for the emitters inside the tube wall. In order to unambiguously extract such strain state, we discuss x-ray diffraction results in these systems, providing a much clearer scenario compared to a sole tube diameter analysis, which provides only a first indication of the lattice relaxation in a given tube. Further, the influence of the overall strain lattice state on the band structure is examined via numerical calculations. Finally, experimental results for the wavelength shift of emissions due to the tube strain state are presented and compared with theoretical calculations available in literature, showing that the possibility to use rolled-up tubes to permanently strain engineer the optical properties of build-in emitters is a consistent method to induce the appearance of electronic states unachievable by direct growth methods.

2.
Small ; 18(1): e2105424, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34786844

RESUMO

Reconfiguration of amorphous complex oxides provides a readily controllable source of stress that can be leveraged in nanoscale assembly to access a broad range of 3D geometries and hybrid materials. An amorphous SrTiO3 layer on a Si:B/Si1- x Gex :B heterostructure is reconfigured at the atomic scale upon heating, exhibiting a change in volume of ≈2% and accompanying biaxial stress. The Si:B/Si1- x Gex :B bilayer is fabricated by molecular beam epitaxy, followed by sputter deposition of SrTiO3 at room temperature. The processes yield a hybrid oxide/semiconductor nanomembrane. Upon release from the substrate, the nanomembrane rolls up and has a curvature determined by the stress in the epitaxially grown Si:B/Si1- x Gex :B heterostructure. Heating to 600 °C leads to a decrease of the radius of curvature consistent with the development of a large compressive biaxial stress during the reconfiguration of SrTiO3 . The control of stresses via post-deposition processing provides a new route to the assembly of complex-oxide-based heterostructures in 3D geometry. The reconfiguration of metastable mechanical stressors enables i) synthesis of various types of strained superlattice structures that cannot be fabricated by direct growth and ii) technologies based on strain engineering of complex oxides via highly scalable lithographic processes and on large-area semiconductor substrates.

3.
Nanotechnology ; 33(16)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34983039

RESUMO

Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Usingk·pcalculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating thatk·pcalculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.

4.
Nanotechnology ; 31(25): 255202, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32143195

RESUMO

We investigate the optical properties of strain-free mesoscopic GaAs/Al x Ga1 - x As structures (MGS) coupled to thin GaAs/Al x Ga1 - x As quantum wells (QWs) with varying Al content (x). We demonstrate that quenching the QW emission by controlling the band crossover between AlGaAs (X-point) and GaAs (Γ-point) gives rise to long carrier lifetimes and enhanced optical emission from the MGS. For x = 0.33, QW and MGS show typical type-I band alignment with strong QW photoluminescence emission and much weaker sharp recombination lines from the MGS localized exciton states. For x ≥ 0.50, the QW emission is considerably quenched due to the change from type-I to type-II structure while the MGS emission is enhanced due to carrier injection from the QW. For x ≥ 0.70, we observe PL quenching from the MGS higher energy states also due to the crossover of X and Γ bands, demonstrating spectral filtering of the MGS emission. Time-resolved measurements reveal two recombination processes in the MGS emission dynamics. The fast component depends mainly on the X - Γ mixing of the MGS states and can be increased from 0.3 to 2.5 ns by changing the Al content. The slower component, however, depends on the X - Γ mixing of the QW states and is associated to the carrier injection rate from the QW reservoir into the MGS structure. In this way, the independent tuning of X - Γ mixing in QW and MGS states allows us to manipulate recombination rates in the MGS as well as to make carrier injection and light extraction more efficient.

5.
Proc Natl Acad Sci U S A ; 114(1): E1-E8, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27986953

RESUMO

Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5 [Formula: see text]m and lateral sizes from [Formula: see text]m2 to [Formula: see text] cm2 Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to [Formula: see text]3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range.

6.
Nano Lett ; 19(2): 708-715, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30668122

RESUMO

Light-matter interaction in two-dimensional photonic or phononic materials allows for the confinement and manipulation of free-space radiation at sub-wavelength scales. Most notably, the van der Waals heterostructure composed of graphene (G) and hexagonal boron nitride (hBN) provides for gate-tunable hybrid hyperbolic plasmon phonon-polaritons (HP3). Here, we present the anisotropic flow control and gate-voltage modulation of HP3 modes in G-hBN on an air-Au microstructured substrate. Using broadband infrared synchrotron radiation coupled to a scattering-type near-field optical microscope, we launch HP3 waves in both hBN Reststrahlen bands and observe directional propagation across in-plane heterointerfaces created at the air-Au junction. The HP3 hybridization is modulated by varying the gate voltage between graphene and Au. This modifies the coupling of continuum graphene plasmons with the discrete hBN hyperbolic phonon polaritons, which is described by an extended Fano model. This work represents the first demonstration of the control of polariton propagation, introducing a theoretical approach to describe the breaking of the reflection and transmission symmetry for HP3 modes. Our findings augment the degree of control of polaritons in G-hBN and related hyperbolic metamaterial nanostructures, bringing new opportunities for on-chip nano-optics communication and computing.

7.
Opt Express ; 26(9): 11238-11249, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716048

RESUMO

Synchrotron infrared nanospectroscopy is a recently developed technique that enables new possibilities in the broadband chemical analysis of materials in the nanoscale, far beyond the diffraction limit in this frequency domain. Synchrotron infrared ports have exploited mainly the high brightness advantage provided by electron storage rings across the whole infrared range. However, optical aberrations in the beam produced by the source depth of bending magnet emission at large angles prevent infrared nanospectroscopy to reach its maximum capability. In this work we present a low-aberration optical layout specially designed and constructed for a dedicated synchrotron infrared nanospectroscopy beamline. We report excellent agreement between simulated beam profiles (from standard wave propagation and raytracing optics simulations) with experimental measurements. We report an important improvement in the infrared nanospectroscopy experiment related to the improved beamline optics. Finally, we demonstrate the performance of the nanospectroscopy endstation by measuring a hyperspectral image of a polar material and we evaluate the setup sensitivity by measuring ultra-thin polymer films down to 6 nm thick.

8.
Cellulose (Lond) ; 25(2): 925-940, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31983816

RESUMO

Combining surface chemical modification of cellulose to introduce positively charged trimethylammonium groups by reaction with glycidyltrimethylammonium chloride (GTMAC) allowed for direct attachment of mammalian MG-63 cells, without addition of protein modifiers, or ligands. Very small increases in the surface charge resulted in significant increases in cell attachment: at a degree of substitution (DS) of only 1.4%, MG-63 cell attachment was > 90% compared to tissue culture plastic, whereas minimal attachment occurred on unmodified cellulose. Cell attachment plateaued above DS of ca. 1.85% reflecting a similar trend in surface charge, as determined from ζ-potential measurements and capacitance coupling (electric force microscopy). Cellulose film stiffness was modulated by cross linking with glyoxal (0.3-2.6% degree of crosslinking) to produce a range of materials with surface shear moduli from 76 to 448 kPa (measured using atomic force microscopy). Cell morphology on these materials could be regulated by tuning the stiffness of the scaffolds. Thus, we report tailored functionalised biomaterials based on cationic cellulose that can be tuned through surface reaction and glyoxal crosslinkin+g, to influence the attachment and morphology of cells. These scaffolds are the first steps towards materials designed to support cells and to regulate cell morphology on implanted biomaterials using only scaffold and cells, i.e. without added adhesion promoters.

9.
Cellulose (Lond) ; 24(1): 253-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32355428

RESUMO

We report the ability of cellulose to support cells without the use of matrix ligands on the surface of the material, thus creating a two-component system for tissue engineering of cells and materials. Sheets of bacterial cellulose, grown from a culture medium containing Acetobacter organism were chemically modified with glycidyltrimethylammonium chloride or by oxidation with sodium hypochlorite in the presence of sodium bromide and 2,2,6,6-tetramethylpipiridine 1-oxyl radical to introduce a positive, or negative, charge, respectively. This modification process did not degrade the mechanical properties of the bulk material, but grafting of a positively charged moiety to the cellulose surface (cationic cellulose) increased cell attachment by 70% compared to unmodified cellulose, while negatively charged, oxidised cellulose films (anionic cellulose), showed low levels of cell attachment comparable to those seen for unmodified cellulose. Only a minimal level of cationic surface derivitisation (ca 3% degree of substitution) was required for increased cell attachment and no mediating proteins were required. Cell adhesion studies exhibited the same trends as the attachment studies, while the mean cell area and aspect ratio was highest on the cationic surfaces. Overall, we demonstrated the utility of positively charged bacterial cellulose in tissue engineering in the absence of proteins for cell attachment.

10.
Langmuir ; 31(41): 11339-43, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26393406

RESUMO

We use Kelvin probe force microscopy (KPFM) and capacitance coupling (dC/dz) to study the electrical properties of graphene oxide (GO). We propose using the dC/dz signal to probe the high frequency dielectric constant of mono- and few-layer GO. Our measurements suggest that the dynamic dielectric constant of GO is on the order of εGO ≅ 3.0 ε0, in the high frequency limit, and independent of the number of GO layers. The measurements are performed at a humidity controlled environment (5% of humidity). The effects of increasing humidity on both the dC/dz and KPFM measurements are analyzed.

11.
Nano Lett ; 13(1): 213-8, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23245385

RESUMO

We fabricate inorganic thin film transistors with bending radii of less than 5 µm maintaining their high electronic performance with on-off ratios of more than 10(5) and subthreshold swings of 160 mV/dec. The fabrication technology relies on the roll-up of highly strained semiconducting nanomembranes, which compacts planar transistors into three-dimensional tubular architectures opening intriguing potential for microfluidic applications. Our technique probes the ultimate limit for the bending radius of high performance thin film transistors.

12.
Nano Lett ; 11(9): 3727-33, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21823680

RESUMO

In this work, we combine self-assembly and top-down methods to create hybrid junctions consisting of single organic molecular monolayers sandwiched between metal and/or single-crystalline semiconductor nanomembrane based electrodes. The fabrication process is fully integrative and produces a yield loss of less than 5% on-chip. The nanomembrane-based electrodes guarantee a soft yet robust contact to the molecules where the presence of pinholes and other defects becomes almost irrelevant. We also pioneer the fabrication and characterization of semiconductor/molecule/semiconductor tunneling heterojunctions which exhibit a double transition from direct tunneling to field emission and back to direct tunneling, a phenomenon which has not been reported previously.


Assuntos
Membranas Artificiais , Nanotecnologia/métodos , Cristalização , Eletroquímica/métodos , Eletrodos , Eletrônica , Metais/química , Microscopia Eletrônica de Varredura/métodos , Nanoestruturas/química , Compostos Orgânicos/química , Semicondutores , Propriedades de Superfície
13.
Chem Rec ; 11(6): 367-70, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21898776

RESUMO

The design of catalytic engines powered by chemical fuels is an exciting and emerging field in multidisciplinary scientific communities. Recent progress in nanotechnology has enabled scientists to shrink the size of macroengines down to microscopic, but yet powerful, engines. Since a couple of years ago, we have reported our progress towards the control and application of catalytic microtubular engines powered by the breakdown of hydrogen peroxide fuel which produces a thrust of oxygen bubbles. Efforts were undertaken in our group to prove whether the fabrication of nanoscale jets is possible. Indeed, the smallest jet engine (600 nm in diameter and 1 picogram of weight) was synthesized based on heteroepitaxially grown layers. These nanojets are able to self-propel in hydrogen peroxide solutions and are promising for the realisation of multiple tasks.

14.
Nano Lett ; 10(9): 3704-9, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20687521

RESUMO

A new method for combining top-down and bottom-up approaches to create superconductor-normal metal-superconductor niobium-based Josephson junctions is presented. Using a rolled-up semiconductor nanomembrane as scaffolding, we are able to create mesoscopic gold filament proximity junctions. These are created by electromigration of gold filaments after inducing an electric field mediated breakdown in the semiconductor nanomembrane, which can generate nanometer sized structures merely using conventional optical lithography techniques. We find that the created point contact junctions exhibit large critical currents of a few milliamps at 4.2 K and an I(c)R(n) product placing their characteristic frequency in the terahertz region. These nanometer-sized filament devices can be further optimized and integrated on a chip for their use in superconductor hybrid electronics circuits.

15.
Nanoscale ; 11(8): 3748-3756, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30747930

RESUMO

Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.

16.
ACS Omega ; 3(1): 937-945, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023793

RESUMO

There is a growing appreciation that engineered biointerfaces can regulate cell behaviors, or functions. Most systems aim to mimic the cell-friendly extracellular matrix environment and incorporate protein ligands; however, the understanding of how a ligand-free system can achieve this is limited. Cell scaffold materials comprised of interfused chitosan-cellulose hydrogels promote cell attachment in ligand-free systems, and we demonstrate the role of cellulose molecular weight, MW, and chitosan content and MW in controlling material properties and thus regulating cell attachment. Semi-interpenetrating network (SIPN) gels, generated from cellulose/ionic liquid/cosolvent solutions, using chitosan solutions as phase inversion solvents, were stable and obviated the need for chemical coupling. Interface properties, including surface zeta-potential, dielectric constant, surface roughness, and shear modulus, were modified by varying the chitosan degree of polymerization and solution concentration, as well as the source of cellulose, creating a family of cellulose-chitosan SIPN materials. These features, in turn, affect cell attachment onto the hydrogels and the utility of this ligand-free approach is extended by forecasting cell attachment using regression modeling to isolate the effects of individual parameters in an initially complex system. We demonstrate that increasing the charge density, and/or shear modulus, of the hydrogel results in increased cell attachment.

17.
ACS Appl Mater Interfaces ; 9(48): 42372-42382, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29129058

RESUMO

Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. We combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials.

18.
Nanoscale Res Lett ; 12(1): 61, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28110446

RESUMO

We use a combined process of Ga-assisted deoxidation and local droplet etching to fabricate unstrained mesoscopic GaAs/AlGaAs structures exhibiting a high shape anisotropy with a length up to 1.2 µm and a width of 150 nm. We demonstrate good controllability over size and morphology of the mesoscopic structures by tuning the growth parameters. Our growth method yields structures, which are coupled to a surrounding quantum well and present unique optical emission features. Microscopic and optical analysis of single structures allows us to demonstrate that single structure emission originates from two different confinement regions, which are spectrally separated and show sharp excitonic lines. Photoluminescence is detected up to room temperature making the structures the ideal candidates for strain-free light emitting/detecting devices.

19.
ACS Appl Mater Interfaces ; 7(33): 18750-8, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26241130

RESUMO

This work reports, for the first time, the excellent performance of an aqueous alkaline solution of cellulose as an adhesive for wet and dry cellulosic substrates. Uniaxial tensile tests of filter paper and sulfite writing paper strips bonded with this adhesive (5% cellulose and 7% NaOH aqueous solution) show that failure never occurs in the joints but always in the pristine substrate areas, except in butt joint samples prepared with sulfite paper. Tensile test also shows that paper impregnated with cellulose solution is stronger than the original substrate. X-ray microtomography and scanning electron microscopy reveal that dissolved cellulose fills the gaps between paper fibers, providing a morphological evidence for the mechanical interlocking adhesion mechanism, while scanning probe techniques provide a sharp view of different domains in the joints. Additionally, bonded paper is easily reconverted to pulp, which facilitates paper reprocessability, solving a well-known industrial problem related to deposition of adhesive aggregates (stickies) on the production equipment.

20.
Nanoscale ; 7(27): 11620-5, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26091534

RESUMO

We observed the coupling of graphene Dirac plasmons with different surfaces using scattering-type scanning near-field optical microscopy integrated into a mid-infrared synchrotron-based beamline. A systematic investigation of a graphene/hexagonal boron nitride (h-BN) heterostructure is carried out and compared with the well-known graphene/SiO2 heterostructure. Broadband infrared scanning near-field optical microscopy imaging is able to distinguish between the graphene/h-BN and the graphene/SiO2 heterostructure as well as differentiate between graphene stacks with different numbers of layers. Based on synchrotron infrared nanospectroscopy experiments, we observe a coupling of surface plasmons of graphene and phonon polaritons of h-BN (SPPP). An enhancement of the optical band at 817 cm(-1) is observed at graphene/h-BN heterostructures as a result of hybridization between graphene plasmons and longitudinal optical phonons of h-BN. Furthermore, longitudinal optical h-BN modes are preserved on suspended graphene regions (bubbles) where the graphene sheet is tens of nanometers away from the surface while the amplitude of transverse optical h-BN modes decrease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA