Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 149(3): 859-869, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38167646

RESUMO

High efficiency, stability, long emission wavelength (NIR-II), and good biocompatibility are crucial for photosensitizers in phototherapy. However, current Food and Drug Administration (FDA)-approved organic fluorophores exhibit poor chemical stability and photostability as well as short emission wavelength, limiting their clinical usage. To address this, we developed Se-IR1100, a novel organic photosensitizer with a photostable and thermostable benzobisthiadiazole (BBTD) backbone. By incorporating selenium as a heavy atom and constructing a D-A-D structure, Se-IR1100 exhibits a maximum fluorescence emission wavelength of 1100 nm. Compared with FDA-approved indocyanine green (ICG), DSPE-PEGylated Se-IR1100 nanoparticles exhibit prominent photostability and long-lasting photothermal effects. Upon 808 nm laser irradiation, Se-IR1100 NPs efficiently convert light energy into heat and reactive oxygen species (ROS), inducing cancer cell death in cellular studies and living organisms while maintaining biocompatibility. With salient photostability and a photothermal conversion rate of 55.37%, Se-IR1100 NPs hold promise as a superior photosensitizer for diagnostic and therapeutic agents in oncology. Overall, we have designed and optimized a multifunctional photosensitizer Se-IR1100 with good biocompatibility that performs NIR-II fluorescence imaging and phototherapy. This dual-strategy method may offer novel approaches for the development of multifunctional probes using dual-strategy or even multi-strategy methods in bioimaging, disease diagnosis, and therapy.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Verde de Indocianina/toxicidade , Nanopartículas/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
2.
J Dairy Sci ; 107(1): 555-572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38220437

RESUMO

Endometritis is one of the most common causes of infertility in dairy cows, and is histopathologically characterized by inflammation and damage of endometrial epithelium. Interferon-tau (IFN-τ) is a novel type I interferon secreted by ruminant trophoblast cells with low cytotoxicity even at high doses. Previous studies suggested that IFN-τ plays an important role in inflammation. However, the mechanisms whereby IFN-τ may modulate the inflammatory responses in the bovine endometrium are unknown. In the present study, primary bovine endometrial epithelial cells (BEEC) isolated from fresh and healthy uterine horns were used for in vitro studies. The integrity of BEEC was assessed by immunofluorescence staining for cytokeratin 18 (CK-18, a known epithelial marker). For the experiments, BEEC were stimulated with different concentrations of lipopolysaccharide (LPS; 0-20 µg/mL) for different times (0-24 h). Cell viability and apoptosis were assessed via CCK-8 and flow cytometry. In a preliminary study, we observed that compared with the control group without LPS, 10 µg/mL of LPS stimulation for 24 h induced apoptosis. In a subsequent study, 20 or 40 ng/mL of IFN-τ alleviated LPS-induced apoptosis. Relative to the LPS group, western blotting further revealed that IFN-τ inhibited the protein abundance of TLR4 and phosphorylated (p-) p65 (p-p65) and Bax/Bcl-2 ratio, suggesting that IFN-τ can protect BEEC against inflammatory injury. Furthermore, the protein abundance of p-phosphoinositide 3-kinase (p-PI3K), p-protein kinase B (p-AKT), p-glycogen synthase kinase-3ß (p-GSK3ß), ß-catenin, and p-forkhead box O1 (p-FoxO1) was lower in the LPS group, whereas IFN-τ upregulated their abundance. The use of LY294002, a specific inhibitor of PI3K/AKT, attenuated the upregulation of p-PI3K, p-AKT p-GSK3ß, ß-catenin, and p-FoxO1 induced by IFN-τ, and also blocked the downregulation of TLR4, p-p65, and Bax/Bcl-2 ratio. This suggested that the inhibition of TLR4 signaling by IFN-τ was mediated by the PI3K/AKT pathway. Furthermore, compared with the LPS group, the ß-catenin agonist SB216763 led to greater p-FoxO1 and lower p-p65 and cell apoptosis. In contrast, knockdown of ß-catenin using small interfering RNA had the opposite effects. To explore the role of FoxO1 on the inhibition of TLR4 by IFN-τ, we employed LY294002 to inhibit the PI3K/AKT while FoxO1 was knocked down. Results revealed that the knockdown of FoxO1 blocked the upregulation of TLR4 and p-p65 induced by LY294002, and enhanced the inhibition of IFN-τ on TLR4, p-p65, and cell apoptosis. Overall, these findings confirmed that IFN-τ can protect endometrial epithelial cells against inflammatory injury via suppressing TLR4 activation through the regulation of the PI3K/AKT/ß-catenin/FoxO1 axis. These represent new insights into the molecular mechanisms underlying the anti-inflammatory function of IFN-τ in BEEC, and also provide a theoretical basis for further studies on the in vivo application of IFN-τ to help prevent negative effects of endometritis.


Assuntos
Doenças dos Bovinos , Endometrite , Interferon Tipo I , Animais , Bovinos , Feminino , Apoptose , Proteína X Associada a bcl-2/metabolismo , beta Catenina/metabolismo , Doenças dos Bovinos/prevenção & controle , Endometrite/prevenção & controle , Endometrite/veterinária , Endométrio/metabolismo , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/veterinária , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
Cell Commun Signal ; 21(1): 22, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691027

RESUMO

The integrity of the structure and function of the endometrium is essential for the maintenance of fertility. However, the repair mechanisms of uterine injury remain largely unknown. Here, we showed that the disturbance of mechanical cue homeostasis occurs after uterine injury. Applying a multimodal approach, we identified YAP as a sensor of biophysical forces that drives endometrial regeneration. Through protein activation level analysis of the combinatorial space of mechanical force strength and of the presence of particular kinase inhibitors and gene silencing reagents, we demonstrated that mechanical cues related to extracellular matrix rigidity can turn off the Rap1a switch, leading to the inactivation of ARHGAP35and then induced activation of RhoA, which in turn depends on the polymerization of the agonist protein F-actin to activate YAP. Further study confirmed that mechanotransduction significantly accelerates remodeling of the uterus by promoting the proliferation of endometrial stromal cells in vitro and in vivo. These studies provide new insights into the dynamic regulatory mechanisms behind uterine remodeling and the function of mechanotransduction. Video Abstract.


Assuntos
Actinas , Proteínas Adaptadoras de Transdução de Sinal , Feminino , Humanos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/genética , Proteínas de Sinalização YAP , Mecanotransdução Celular/fisiologia , Matriz Extracelular/metabolismo , Útero/metabolismo
4.
BMC Vet Res ; 19(1): 271, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087280

RESUMO

BACKGROUND: Peripheral blood carries a reservoir of mRNAs that regulate cardiac structure and function potential. Although it is well recognized that the typical symptoms of Myxomatous Mitral Valve Disease (MMVD) stage B2 are long-standing hemodynamic disorder and cardiac structure remodeling caused by mitral regurgitation, the transcriptomic alterations in blood from such dogs are not understood. RESULTS: In the present study, comparative high-throughput transcriptomic profiling of blood was performed from normal control (NC) and naturally-occurring MMVD stage B2 (MMVD) dogs. Using Weighted Gene Co-expression Network Analyses (WGCNA), Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genomes (KEGG), we identified that the turquoise module was the most highly correlated with echocardiographic features and found 64 differentially expressed genes (DEGs) that were significantly enriched in platelet activation related pathways. Therefore, from the turquoise module, we selected five DEGs (MDM2, ROCK1, RIPK1, SNAP23, and ARHGAP35) that, according to real-time qPCR, exhibited significant enrichment in platelet activation related pathways for validation. The results showed that the blood transcriptional abundance of MDM2, ROCK1, RIPK1, and SNAP23 differed significantly (P < 0.01) between NC and MMVD dogs. On the other hand, Correlation Analysis revealed that MDM2, ROCK1, RIPK1, and SNAP23 genes negatively regulated the heart structure parameters, and followed the same trend as observed in WGCNA. CONCLUSION: We screened four platelet activation related genes, MDM2, ROCK1, RIPK1, and SNAP23, which may be considered as the candidate biomarkers for the diagnosis of MMVD stage B2. These findings provided new insights into MMVD pathogenesis.


Assuntos
Doenças do Cão , Doenças das Valvas Cardíacas , Insuficiência da Valva Mitral , Cães , Animais , Valva Mitral/patologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/veterinária , Insuficiência da Valva Mitral/genética , Insuficiência da Valva Mitral/veterinária , Ativação Plaquetária/genética , Ecocardiografia/veterinária
5.
Inflammopharmacology ; 31(6): 2901-2937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947913

RESUMO

Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.


Assuntos
Anti-Inflamatórios , Produtos Biológicos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
6.
Microb Pathog ; 155: 104935, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33945855

RESUMO

Pneumonia is the acute inflammation of lung tissue and is multi-factorial in etiology. Staphylococcus aureus (S. aureus) is a harmful pathogen present as a normal flora of skin and nares of dairy cattle. In bovine pneumonia, S. aureus triggers to activates Toll-Like Receptors (TLRs), that further elicits the activation of the inflammation via NF-κB pathway, oxidative stress and apoptotic pathways. In the current study, pathogen-associated gene expression of the pro-inflammatory cytokines, oxidative stress and apoptotic markers in the lung tissue of cattle was explored in bovine pneumonia. Fifty lung samples collected from abattoir located in Wuhan city, Hubei, China. Histopathologically, thickening of alveolar wall, accumulation of inflammatory cells and neutrophils in perivascular space, hyperemia, hemorrhages and edema were observed in infected lungs as compared to non-infected lung samples. Furthermore, molecular identification and characterization were carried by amplification of S. aureus-specific nuc gene (270 base pairs) from the infected and non-infected lung samples to identify the S. aureus. Moreover, qPCR results displayed that relative mRNA levels of TLR2, TLR4, pro-inflammatory gene (IL-1ß, IL-6 and TNF-α) and apoptosis-associated genes (Bax, caspase-3 and caspase-9) were up-regulated except Bcl-2, which is antiapoptotic in nature, and oxidative stress related genes (Nrf2, NQO1, HO-1 and GCLC) which was down-regulated in infected pulmonary group. The relative protein expression of NF-κB, mitochondria-mediated apoptosis gene was up-regulated while Bcl-2 and Nrf2 pathway genes were downregulated in infected cattle lungs. Our findings revealed that genes expression levels of inflammatory mediators, oxidative stress and apoptosis were associated with host immunogenic regulatory mechanisms in the lung tissue during infection. Conclusively, the present study provides insights of active immune response via TLRs-mediated inflammatory, oxidative damage, and apoptotic paradox.


Assuntos
Citocinas , Pneumonia , Animais , Apoptose , Bovinos , China , Citocinas/genética , Expressão Gênica , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Pneumonia/genética , Pneumonia/veterinária , Staphylococcus aureus/metabolismo
7.
Inflamm Res ; 70(10-12): 1217-1231, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34554275

RESUMO

OBJECTIVE: Mycoplasma gallisepticum (MG), a notorious avian pathogen, leads to considerable economic losses in the poultry industry. MG infection is characterized by severe, uncontrollable inflammation and host DNA damage. Micro ribonucleic acids (miRNAs) have emerged as important regulators in microbial pathogenesis. However, the role of miRNAs in MG infection is poorly characterized. In this study, we validated the functional roles of gga-miR-142-3p. METHODS: The relative expression of gga-miR-142-3p in the lungs of the MG-infected chicken embryos and the MG-infected chicken embryonic fibroblast cell line (DF-1) was determined by reverse transcription quantitative real-time PCR analysis. Bioinformatics database was used to analysis the target gene of gga-miR-142-3p. The luciferase reporter assay as well as gene expression analysis were conducted to validate the target gene. To further explore the biological functions of gga-miR-142-3p upon MG infection, the cell proliferation was quantified using Cell Counting Kit-8 (CCK-8). Meanwhile, cell cycle analysis and apoptosis were measured using a flow cytometer. RESULTS: gga-miR-142-3p was significantly upregulated in both MG-infected chicken-embryo lungs and the DF-1 cells. gga-miR-142-3p over expression significantly downregulated the expression of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6 and tumor necrosis factor alpha after MG infection. Meanwhile, gga-miR-142-3p enhanced the host defense against MG infection by facilitating cell proliferation, promoting cell progression and inhibiting cell apoptosis. Interestingly, TAB2 knockdown groups show similar results, whereas, TAB2 over-expression groups and gga-miR-142-3p inhibitor groups had thoroughly opposite results. The expression of p-p65 in nuclear factor kappa B (NF-κB) and p-p38 in the mitogen-activated protein kinase (MAPK) pathway was decreased when gga-miR-142-3p was over-expressed. CONCLUSION: Upon MG infection, upregulation of gga-miR-142-3p alleviates inflammation by negatively regulating the signaling pathways of NF-κB and MAPKs by targeting TAB2 and facilitates cell proliferation by inhibiting cell apoptosis and promoting cell cycle progression to defend against MG infection.


Assuntos
MicroRNAs , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/imunologia , Mycoplasma gallisepticum , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Apoptose , Ciclo Celular , Linhagem Celular , Proliferação de Células , Embrião de Galinha , Galinhas , Citocinas/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Transdução de Sinais , Regulação para Cima
8.
Ecotoxicol Environ Saf ; 219: 112353, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34034046

RESUMO

Acute lung injury (ALI) is acute uncontrolled inflammation of lung tissue that leads to high fatality both in human and animals. Staphylococcus aureus (S. aureus) could be an opportunistic, versatile bacterial etiology of ALI. Ginsenoside Rb1 (Rb1) is extracted from the Panax ginseng, which displays a wide range of biological and pharmacological effects. However, protective effects of Rb1 in S. aureus-induced ALI though endoplasmic reticulum (ER) stress and death receptor-mediated pathways have not yet been reported. Therefore, present study was planned with the aims to investigate the antioxidant and anti-apoptotic properties of Rb1 through regulation of ER stress as well as death receptor-mediated pathways in ALI induced by S. aureus in mice. In this study, four groups of healthy Kunming mice (n = 48) were used. The S. aureus (80 µl; 1 ×107 CFU/10 µl) was administered intranasally to establish mice model of ALI. After 24 h of onset of S. aureus-induced ALI, the mice were injected thrice with Rb1 (40 mg/kg) intraperitoneally six hours apart. Histopathology, enzyme linked immunosorbent assay (ELISA), real time quantitative polymerase chain reaction (RT-qPCR), Immunohistochemistry and western blotting assay were employed in the current study. Our results suggested that Rb1 administration save lungs from pulmonary injury by reducing wet to dry (W/D) ratio, protein levels, total cells, neutrophilic count, reactive oxygen species (ROS), myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx)1 depletion. Meanwhile, Rb1 therapy ameliorated histopathology alteration of lung tissue and pro-inflammatory cytokines secretion. The gene expression of ER stress marker (PERK, AFT-6, IRE1 and CHOP) were upregulated markedly (P < .05) in S. aureus-instilled groups, which was reduced by Rb1 administration that is reveled from the result findings of the RT-qPCR and immunoblot assay. The results of immunohistochemistry for CHOP indicated the increased expression in S. aureus groups which in turn ameliorated by Rb1 treatment. The mRNA expression demonstrated that death receptor-associated genes (FasL, Fas, FADD and caspase-8) showed up-regulation in S. aureus group. The similar findings were observed for the protein expression of caspase-8, FADD and Fas. Rb1 treatment markedly (P < .05) reversed protein and mRNA expression levels of these death receptor-associated genes when compared to the S. aureus group. Taken together, Rb1 attenuated S. aureus-induced oxidative damage via the ER stress-mediated pathway and apoptosis through death receptor-mediated pathway. Conclusively, our findings provide an insight into preventive mechanism of Rb1 in ALI caused by S. aureus and hence proven a scientific baseline for the therapeutic application of Rb1.


Assuntos
Antioxidantes/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ginsenosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Glutationa Peroxidase , Pulmão/metabolismo , Malondialdeído/metabolismo , Camundongos , Panax , Espécies Reativas de Oxigênio/metabolismo , Receptores de Morte Celular/metabolismo , Proteínas de Ligação a Retinoblastoma , Infecções Estafilocócicas , Staphylococcus aureus , Superóxido Dismutase/metabolismo , Ubiquitina-Proteína Ligases , Glutationa Peroxidase GPX1
9.
J Cell Mol Med ; 24(15): 8430-8440, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32562470

RESUMO

Alpinetin, the main active ingredient in the Chinese medicinal herb Alpinia katsumadai Hayata, has been found to have anticancer activity. However, the therapeutic efficacy of signalling cascades modulated by alpinetin remains unknown. Here, we showed that alpinetin provoked mitochondria-associated apoptosis in a dose-dependent manner in breast cancer cells. Mechanistic investigations revealed that alpinetin dampens hypoxia-inducible factor-1α (HIF-1α) signalling due to a lack of NF-κB activation through reduced mitochondrial reactive oxygen species (ROS) production, decreasing HIF-1α transcription. In vivo, we also found alpinetin led to significant tumour regression by inhibiting NF-κB pathway. Overall, our work uncovers a ROS/NF-κB/HIF-1α axis-dependent mechanism underlying the anticancer effects of alpinetin and suggests that alpinetin could act as a novel therapeutic agent against breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Flavanonas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transcrição Gênica/efeitos dos fármacos
10.
J Cell Mol Med ; 24(1): 405-417, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756048

RESUMO

Endometritis is a postnatal reproductive disorder disease, which leads to great economic losses for the modern dairy industry. Emerging evidence indicates that microRNAs (miRNAs) play a pivotal role in a variety of diseases and have been identified as critical regulators of the innate immune response. Recent miRNome profile analysis revealed an altered expression level of miR-148a in cows with endometritis. Therefore, the present study aims to investigate the regulatory role of miR-148a in the innate immune response involved in endometritis and estimate its potential therapeutic value. Here, we found that miR-148a expression in lipopolysaccharide (LPS)-stimulated endometrial epithelial cells was significantly decreased. Our results also showed that overexpression of miR-148a using agomiR markedly reduced the production of pro-inflammatory cytokines, such as IL-1ß and TNF-α. Moreover, overexpression of miR-148a also suppressed NF-κB p65 activation by targeting the TLR4-mediated pathway. Subsequently, we further verified that miR-148a repressed TLR4 expression by binding to the 3'-UTR of TLR4 mRNA. Additionally, an experimental mouse endometritis model was employed to evaluate the therapeutic value of miR-148a. In vivo studies suggested that up-regulation of miR-148a alleviated the inflammatory conditions in the uterus as evidenced by H&E staining, qPCR and Western blot assays, while inhibition of miR-148a had inverse effects. Collectively, pharmacologic stabilization of miR-148a represents a novel therapy for endometritis and other inflammation-related diseases.


Assuntos
Endometrite/genética , Inflamação/genética , MicroRNAs/metabolismo , Animais , Sequência de Bases , Bovinos , Citocinas/biossíntese , Endometrite/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , NF-kappa B/metabolismo , Transdução de Sinais
11.
J Cell Physiol ; 235(9): 5925-5937, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32003008

RESUMO

Acute lung injury (ALI), characterized by increased excessive pulmonary inflammation, is a pervasive inflammatory disease with clinically high incidence. MicroRNA (miRNAs) have been associated with the progression of multiple diseases and are regarded as novel regulators of inflammation. However, it remains largely unknown whether the miRNAs-mediated regulatory mechanism has an effect on lipopolysaccharide (LPS)-induced inflammation in ALI. We discovered that miR-182 distinctly lessened expression in the lung tissue of mice with ALI and macrophages stimulated by LPS. We also found that overexpression of miR-182 significantly cut down the secretion of inflammatory cytokines, while this change was reversed by inhibition of miR-182. In addition, miR-182 suppressed the activation of NF-κB by targeting TLR4 expression. And it was confirmed that miR-182 directly regulated TLR4 expression at the posttranscriptional level by binding to the 3'-UTR of TLR4. Together, these data suggested that inhibition of TLR4 expression assuaged LPS-stimulated inflammation through negative feedback regulation of miR-182.


Assuntos
Lesão Pulmonar Aguda/genética , MicroRNAs/genética , Pneumonia/genética , Receptor 4 Toll-Like/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Retroalimentação Fisiológica , Humanos , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Camundongos , NF-kappa B/genética , Pneumonia/induzido quimicamente , Pneumonia/patologia , Células RAW 264.7 , Transdução de Sinais/genética
12.
J Cell Physiol ; 235(5): 4766-4777, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31674024

RESUMO

Endometritis is an inflammatory change in the structure of the endometrium due to various causes and is a common cause of infertility. Studies have confirmed that microRNAs (miRNAs) play a key regulatory role in various inflammatory diseases. However, the miRNA-mediated mechanism of endometrial inflammation induced by lipopolysaccharides (LPS) remains unclear. In this study, real-time quantitative polymerase chain reaction, Western blot analysis, immunofluorescence and Rac family small GTPase 1 (Rac1) interference were used to reveal the overexpression of miR-488 in the LPS-induced bovine uterus, and the effect of protein kinase B κ-light chain enhancement of the nuclear factor-activated B cells (AKT/NF-κB) pathway in intimal epithelial cells. The results showed that the expression of inflammatory cytokines such as interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α in the experimental group was significantly lower than that in the control group when miR-488 was overexpressed. Similar results were observed in the expression levels of p-AKT, p-IKK, and p-p65 proteins. In addition, the dual-luciferase reporter system confirmed that miRNA-488 may directly target the 3'-untranslated region of Rac1. In turn, the expression of Rac1 was inhibited. Moreover, the nuclear translocation of NF-κB was inhibited, and meanwhile, the accumulation of reactive oxygen species (ROS) in the cells was reduced. Thus, we provide basic data for the negative regulation of miR-488 in LPS-induced inflammation by inhibiting ROS production and the AKT/NF-kB pathway in intimal epithelial cells.


Assuntos
Endometriose/enzimologia , Endométrio/enzimologia , Células Epiteliais/enzimologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Bovinos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Endometriose/induzido quimicamente , Endometriose/genética , Endometriose/patologia , Endométrio/patologia , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Neuropeptídeos/genética , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética
13.
J Cell Physiol ; 235(10): 7081-7093, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32052456

RESUMO

Staphylococcus aureus (S. aureus)-induced mastitis is the most frequent, pathogenic, and prevalent infection of the mammary gland. The ligand growth arrest-specific 6 (Gas6) is a secretory protein that binds to and activates Tyro3, Axl, and MerTK receptors. This study explored the role of Gas6 in S. aureus-induced mastitis. Our results revealed that TLR receptors initiate the innate immune response in mammary gland tissues and epithelial cells and that introducing S. aureus activates TLR2 and TLR6 to drive multiple intracellular mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways. Moreover, S. aureus also induces Gas6, which then activates the TAM receptor kinase pathway, which is related to the inhibition of TLR2- and TLR6-mediated inflammatory pathways through SOCS1 and SOCS3 induction. Gas6 absence alone was found to be involved in the downregulation of TAM receptor-mediated anti-inflammatory effects by inducing significantly prominent expression of TRAF6 and low protein and messenger RNA expression of SOCS1 and SOCS3. S. aureus-induced MAPK and NF-ĸB p65 phosphorylation were also dependent on Gas6, which negatively regulated the production of Pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) in S. aureus-treated mammary tissues and mammary epithelial cells. Our in vivo and in vitro study uncovered the Gas6-mediated negative feedback mechanism, which inhibits TLR2- and TLR6-mediated MAPK and NF-ĸB signaling by activating TAM receptor kinase (MerTK, Axl, and Tyro3) through the induction of SOCS1/SOCS3 proteins.


Assuntos
Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Infecções Estafilocócicas/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Inflamação/microbiologia , Glândulas Mamárias Animais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
14.
J Cell Physiol ; 235(3): 2389-2402, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31541458

RESUMO

Breast cancer is a common malignancy that is highly lethal with poor survival rates and immature therapeutics that urgently needs more effective and efficient therapies. MicroRNAs are intrinsically involved in different cancer remedies, but their mechanism in breast cancer has not been elucidated for prospective treatment. The function and mechanism of microRNA-188-5p (miR-188) have not been thoroughly investigated in breast cancer. In our study, we found that the expression of miR-188 in breast cancer tissues was obviously reduced. Our findings also revealed the abnormal overexpression of miR-188 in 4T1 and MCF-7 cells significantly suppressed cell proliferation and migration and also enhanced apoptosis. miR-188 induced cell cycle arrest in the G1 phase. To illuminate the molecular mechanism of miR-188, Rap2c was screened as a single target gene by bioinformatics database analysis and was further confirmed by dual-luciferase assay. Moreover, Rap2c was found to be a vital molecular switch for the mitogen-activated protein kinase signaling pathway in tumor progression by decreasing apoptosis and promoting proliferation and migration. In conclusion, our results revealed that miR-188 is a cancer progression suppressor and a promising future target for breast cancer therapy.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , MicroRNAs/genética , Proteínas ras/genética , Apoptose/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7
15.
Microb Pathog ; 143: 104109, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32171710

RESUMO

Acute lung injury (ALI) is considered as an uncontrolled inflammatory response that can leads to acute respiratory distress syndrome (ARDS), which limits the therapeutic strategies. Ginsenosides Rb1 (Rb1), an active ingredient obtained from Panax ginseng, possesses a broad range of pharmacological and medicinal properties, comprising the anti-inflammatory, anti-oxidant, and anti-tumor activities. Therefore, the purpose of the present study was to investigate the protective effects of Rb1 against S. aureus-induced (ALI) through regulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and mitochondrial-mediated apoptotic pathways in mice (in-vivo), and RAW264.7 cells (in-vitro). For that purpose, forty Kunming mice were randomly assigned into four treatment groups; (1) Control group (phosphate buffer saline (PBS); (2) S. aureus group; (3) S. aureus + Rb1 (20 mg/kg) group; and (4) Rb1 (20 mg/kg) group. The 20 µg/mL dose of Rb1 was used in RAW264.7 cells. In the present study, we found that Rb1 treatment reduced ALI-induced oxidative stress via suppressing the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) and increase the antioxidant enzyme activities of superoxidase dismutase 1 (SOD1), Catalase (CAT), and glutathione peroxidase 1 (Gpx1). Similarly, Rb1 markedly increased messenger RNA (mRNA) expression of antioxidant genes (SOD1, CAT and Gpx1) in comparison with ALI group. The histopathological results showed that Rb1 treatment ameliorated ALI-induced hemorrhages, hyperemia, perivascular edema and neutrophilic infiltration in the lungs of mice. Furthermore, Rb1 enhanced the antioxidant defense system through activating the Nrf2 signaling pathway. Our findings showed that Rb1 treated group significantly up-regulated mRNA and protein expression of Nrf2 and its downstream associated genes down-regulated by ALI in vivo and in vitro. Moreover, ALI significantly increased the both mRNA and protein expression of mitochondrial-apoptosis-related genes (Bax, caspase-3, caspase-9, cytochrome c and p53), while decreased the Bcl-2. In addition, Rb1 therapy significantly reversed the mRNA and protein expression of these mitochondrial-apoptosis-related genes, as compared to the ALI group in vivo and in vitro. Taken together, Rb1 alleviates ALI-induced oxidative injury and apoptosis by modulating the Nrf2 and mitochondrial signaling pathways in the lungs of mice.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ginsenosídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Infecções Estafilocócicas/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Ginsenosídeos/química , Camundongos , Panax/química , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real
16.
Mol Ther ; 27(10): 1758-1771, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31405809

RESUMO

Emerging evidence has revealed that excessive activation of macrophages may result in an adverse lung inflammation involved in sepsis-related acute lung injury (ALI). However, it has never been clearly identified whether peripheral circulating serum exosomes participate in the pathogenesis of sepsis-related ALI. Therefore, the purposes of our study were to investigate the effect of serum exosomes on macrophage activation and elucidate a novel mechanism underlying sepsis-related ALI. Here we found that exosomes were abundant in the peripheral blood from ALI mice and selectively loaded microRNAs (miRNAs), such as miR-155. In vivo experiments revealed that intravenous injection of serum exosomes harvested from ALI mice, but not control mice, increased the number of M1 macrophages in the lung, and it caused lung inflammation in naive mice. In vitro, we demonstrated that serum exosomes from ALI mice delivered miR-155 to macrophages, stimulated nuclear factor κB (NF-κB) activation, and induced the production of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. Furthermore, we also showed that serum exosome-derived miR-155 promoted macrophage proliferation and inflammation by targeting SHIP1 and SOCS1, respectively. Collectively, our data suggest the important role of circulating exosomes secreted into peripheral blood as a key mediator of septic lung injury via exosome-shuttling miR-155.


Assuntos
Lesão Pulmonar Aguda/genética , Exossomos/transplante , MicroRNAs/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Pneumonia/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Regiões 3' não Traduzidas , Lesão Pulmonar Aguda/sangue , Animais , Modelos Animais de Doenças , Exossomos/genética , Injeções Intravenosas , Interleucina-6/metabolismo , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Masculino , Camundongos , NF-kappa B/metabolismo , Pneumonia/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
17.
J Cell Mol Med ; 23(5): 3711-3723, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30920152

RESUMO

It is well established that cancer cells depend upon aerobic glycolysis to provide the energy they need to survive and proliferate. However, anti-glycolytic agents have yielded few positive results in human patients, in part due to dose-limiting side effects. Here, we discovered the unexpected anti-cancer efficacy of Polydatin (PD) combined with 2-deoxy-D-glucose (2-DG), which is a compound that inhibits glycolysis. We demonstrated in two breast cell lines (MCF-7 and 4T1) that combination treatment with PD and 2-DG induced cell apoptosis and inhibited cell proliferation, migration and invasion. Furthermore, we determined the mechanism of PD in synergy with 2-DG, which decreased the intracellular reactive oxygen (ROS) levels and suppressed the PI3K/AKT pathway. In addition, the combined treatment inhibited the glycolytic phenotype through reducing the expression of HK2. HK2 deletion in breast cancer cells thus improved the anti-cancer activity of 2-DG. The combination treatment also resulted in significant tumour regression in the absence of significant morphologic changes in the heart, liver or kidney in vivo. In summary, our study demonstrates that PD synergised with 2-DG to enhance its anti-cancer efficacy by inhibiting the ROS/PI3K/AKT/HIF-1α/HK2 signalling axis, providing a potential anti-cancer strategy.


Assuntos
Neoplasias da Mama/metabolismo , Desoxiglucose/farmacologia , Enzimas/metabolismo , Glucosídeos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estilbenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/química , Enzimas/genética , Feminino , Glucosídeos/química , Glicólise/efeitos dos fármacos , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Estrutura Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/química , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
J Cell Physiol ; 234(3): 2511-2522, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30218457

RESUMO

Sodium selenite (SSE), a source of inorganic selenium, has been widely used as a clinical cancer treatment, but the precise molecular mechanisms of SSE remain to be elucidated. Our in vitro experiments have confirmed that SSE treatment causes a transient increase in intracellular reactive oxygen species (ROS) levels, resulting in the inhibition of nuclear transcription factor-κB (NF-κB) signaling and p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha phosphorylation levels in 4T1 cells. The inhibition of NF-κB subsequently increased the expression of the apoptosis gene B-cell lymphoma-2-associated X (Bax) and downregulated the transcription of antiapoptosis genes, such as B-cell lymphoma-2, cellular inhibitor of apoptosis 1, and X-linked inhibitor of apoptosis. Additionally, the accumulation of ROS caused mitochondrial dysfunction, leading to the activation of caspase-9 and -3, thereby resulting in apoptosis. However, modulation of the ROS level by the chemical inhibitor N-acetyl-cysteine reversed these events. Similarly, in vitro murine syngeneic breast tumor models showed that SSE inhibits tumor growth by promoting apoptosis. These results indicate that SSE induces apoptosis via ROS-mediated inhibition of NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Mamárias Animais/tratamento farmacológico , Selenito de Sódio/farmacologia , Animais , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caspase 3/genética , Caspase 9/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NF-kappa B/genética , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética , Proteína X Associada a bcl-2/genética
19.
J Cell Physiol ; 234(12): 22874-22883, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31148190

RESUMO

Acute lung injury (ALI) is a severe acute inflammatory reaction of the lungs caused by a variety of factors, which can lead to a high mortality rate. MicroRNAs are a novel therapeutic molecule that play a vital role in many diseases. However, its mechanism of action in lipopolysaccharide (LPS)-induced mouse ALI is not clear. The study aimed to investigate the mechanism of action of miR-497 in LPS-induced ALI. As a result, it was found that the expression of miR-497 in the inflammatory reaction showed a decrease in time and dose trends. Importantly, miR-497 reduced LPS-induced expression levels of related inflammatory factors. In addition, we also demonstrated that IRAK2 is a direct target molecule of miR-497. Interestingly, we further found that miR-497 inhibits the expression of IRAK2 by targeting IRAK2-3'UTR. Therefore, miR-497 can partially negatively regulate the activation of IRAK2-NF-κB pathway in LPS-induced inflammatory responses.


Assuntos
Lesão Pulmonar Aguda/genética , Inflamação/genética , Quinases Associadas a Receptores de Interleucina-1/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Camundongos , NF-kappa B/genética , Transdução de Sinais/genética
20.
Microb Pathog ; 136: 103721, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494298

RESUMO

Acute lung Injury (ALI) is the clinical syndrome of parenchymal lung disease, leading to an extremely high mortality. The pathogenesis of ALI is suggested to be a consequence of uncontrolled inflammation. Lipopolysaccharide (LPS)-induced ALI mice model is often used for the mechanism. Studies show that TGF-beta activated kinase 1 (MAP3K7) binding protein 1/2 (TAB2) plays a crucial role in LPS-induced inflammation response. Furthermore, microRNA-142a-3p (miR-142a-3p) has been observed to be involved in inflammation-induced disease. Thus, we investigated the role of miR-142a-3p and TAB2 on LPS-induced ALI, which involved the TLR4/TAB2/NF-κB signaling. ALI and normal lung tissues were collected to access the relative expression of pro-inflammatory cytokines and miR-142a-3p. Histopathological examination and Wet to Dry weight ratios of lung tissues were used to access the establishment of ALI models. Raw264.7 cells were transfected with si-TAB2 or miR-142a-3p mimics to elucidate the role of TAB2 or miR-142a-3p in the inflammatory cascade in ALI. Additionally, the relationship between miR-142a-3p and TAB2 was validated by dual-luciferase report system. Our study discovered that miR-142-3p was up-regulated both in LPS-induced ALI mice model and RAW264.7 cells model. MiR-142a-3p mimics group experienced significant decrease in the secretion of pro-inflammatory cytokines as a result of the inhibition of NF-κB signaling pathway. Bioinformatics database showed that the adaptor protein, TAB2, was critical in this pathway and it is the target gene of miR-142a-3p. Their relation was first confirmed by us via dual-luciferase report system. Results of our study demonstrated that miR-142a-3p exerts as a protective role in LPS-induced ALI through down-regulation of NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endotoxinas/toxicidade , Escherichia coli/patogenicidade , Lipopolissacarídeos/toxicidade , MicroRNAs/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Modelos Teóricos , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA