Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Cardiovasc Med ; 8: 719805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901202

RESUMO

The increasing incidence of stress-induced cardiomyopathy is due to the complexities of our modern-day lives, which constantly elicit stress responses. Herein, we aimed to explore the therapeutic potential of Amlexanox and Forskolin in promoting the recovery from stress-induced cardiomyopathy. Isoproterenol-induced cardiomyopathy (ICM) models were made, and the following treatment interventions were administered: 5% v/v DMSO as a placebo, Amlexanox (2.5 mg/100 g/day) treatment, Forskolin (0.5 mg/100 g/day), and Amlexanox and Forskolin combination, at their respective aforementioned dosages. The effects of Amlexanox and Forskolin treatment on ICM models were assessed by eletrocardiography and echocardiography. Also, using histological analysis and ELISA, their impact on myocardial architecture and inflammation were ascertained. ICM mice had excessive myocardial fibrosis, hypertrophy, and aggravated LVSDs which were accompanied by massive CD86+ inflammatory cells infiltration. Amlexanox treatment attenuated the myocardial hypertrophy, fibrosis, and inflammation and also slightly improved systolic functions. Meanwhile, forskolin treatment resulted in arrhythmias but significantly enhanced the resolution of myocardial fibrosis and inflammation. Intriguingly, Amlexanox and Forskolin combination demonstrated the most potency at promoting the recovery of the ICM from LVSD by attenuating maladaptive myocardial hypertrophy, fibrosis, and inflammatory responses. Our findings highlight the Amlexanox and Forskolin combination as a potential therapeutic intervention for enhancing cardiac function recovery from stress-induced cardiomyopathy by promoting the resolution of maladaptive cardiac remodeling.

2.
Mol Immunol ; 133: 110-121, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640761

RESUMO

As a major feature of diabetes, inflammation is closely related to macrophage extracellular traps and the expression of hepcidin upregulated by diabetes is reportedly involved in chronic inflammation. Therefore, we aimed to explore whether hepcidin could be implicated in inflammation and macrophage extracellular traps (METs) formation. The diabetic db/db mouse model was established exhibiting insulin resistance (IR), inflammation, macrophages infiltration and higher expression of hepcidin, where samples were obtained from epididymal adipose tissue. We observed that inflammation and IR improved in adipose tissue of mice treated with hepcidin gene silencing. Furthermore, METs formation could be markedly inhibited via hepcidin gene silencing followed by attenuated inflammatory response due to METs, indicating hepcidin gene silencing played a key role in anti-inflammation by inhibiting METs formation. So, we concluded that hepcidin gene silencing has a potential for treatment of diabetes due to its ability to ameliorate inflammation via inhibiting METs formation.


Assuntos
Diabetes Mellitus/terapia , Armadilhas Extracelulares/imunologia , Hepcidinas/genética , Macrófagos/imunologia , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Linhagem Celular , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Inflamação/genética , Inflamação/imunologia , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Estresse Oxidativo/fisiologia , Células RAW 264.7 , RNA Interferente Pequeno/genética
3.
Front Cell Dev Biol ; 9: 719351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631707

RESUMO

Chronic catecholamine stress (CCS) induces the occurrence of cardiomyopathy-pathological cardiac hypertrophy (PCH), which is characterized by left ventricular systolic dysfunction (LVSD). Recently, mounting evidence has implicated myocardial inflammation in the exacerbation of pathological cardiac remodeling. However, there are currently no well-defined treatment interventions or regimes targeted at both the attenuation of maladaptive myocardial hypertrophy and inflammation during CCS to prevent PCH. G protein-coupled receptor kinase 5 (GRK5) and adenylyl cyclases (ACs)-cAMP mediates both cardiac and inflammatory responses. Also, GRK5 and ACs are implicated in stress-induced LVSD. Herein, we aimed at preventing PCH during CCS via modulating adaptive cardiac and inflammatory responses by inhibiting GRK5 and/or stimulating ACs. Isoproterenol-induced cardiomyopathy (ICM) was modeled using 0.5 mg/100 g/day isoproterenol injections for 40 days. Alterations in cardiac and inflammatory responses were assessed from the myocardia. Similarities in the immunogenicity of cardiac troponin I (cTnI) and lipopolysaccharide under CCS were assessed, and Amlexanox (35 µM/ml) and/or Forskolin (10 µM/ml) were then employed in vitro to modulate adaptive inflammatory responses by inhibiting GRK5 or activating ACs-cAMP, respectively. Subsequently, Amlexanox (2.5 mg/100 g/day) and/or Forskolin (0.5 mg/100 g/day) were then translated into in vivo during CCS to modulate adaptive cardiac and inflammatory responses. The effects of Amlexanox and Forskolin on regulating myocardial systolic functions and inflammatory responses during CCS were ascertained afterward. PCH mice had excessive myocardial hypertrophy, fibrosis, and aggravated LVSD, which were accompanied by massive CD68+ inflammatory cell infiltrations. In vitro, Forskolin-AC/cAMP was effective than Amlexanox-GRK5 at downregulating proinflammatory responses during stress; nonetheless, Amlexanox and Forskolin combination demonstrated the most efficacy in modulating adaptive inflammatory responses. Individually, the translated Amlexanox and Forskolin treatment interventions were ineffective at subduing the pathological remodeling and sustaining cardiac function during CCS. However, their combination was potent at preventing LVSD during CCS by attenuating maladaptive myocardial hypertrophy, fibrosis, and inflammatory responses. The treatment intervention attained its potency mainly via Forskolin-ACs/cAMP-mediated modulation of cardiac and inflammatory responses, coupled with Amlexanox inhibition of GRK5 mediated maladaptive cascades. Taken together, our findings highlight the Amlexanox and Forskolin combination as a potential therapeutic intervention for preventing the occurrence of pathological cardiac hypertrophy during chronic stress.

4.
Am J Cardiovasc Drugs ; 20(2): 149-160, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31523760

RESUMO

BACKGROUND: Levosimendan, a calcium sensitizer and potassium channel opener, has been demonstrated to improve myocardial function without increasing oxygen consumption and to show protective effects in other organs. Recently, a prospective, randomized controlled trial (RCT) revealed an association between levosimendan use and a possible increased risk of bleeding postoperatively. Levosimendan's anti-platelet effects have been shown in in vitro studies. Current studies do not provide sufficient data to support a relation between perioperative levosimendan administration and increased bleeding risk. PURPOSE: Our goal was to investigate the relation between perioperative levosimendan administration and increased bleeding risk using a meta-analysis study design. METHODS: The PubMed, Ovid, EMBASE and Cochrane Library databases were searched for relevant RCTs before July 1, 2019. The outcome parameters included reoperation secondary to increased bleeding in the postoperative period, the amount of postoperative recorded blood loss, and the need for transfusion of packed red blood cells (RBCs) and other blood products. RESULTS: A total of 1160 patients in nine RCTs (576 in the levosimendan group and 584 in the control group) were included according to our inclusion criteria. Analysis showed that perioperative levosimendan administration neither increased the rate of reoperation secondary to bleeding nor increased the amount of postoperative chest tube drainage when compared with the control group. In terms of blood product transfusion, levosimendan did not influence the requirement for RBC transfusion, platelet transfusion nor fresh frozen plasma (FFP) transfusion. Levosimendan also did not shorten or prolong the aortic cross-clamp time or the cardiopulmonary bypass time. CONCLUSION: The analyzed parameters, including reoperations due to bleeding, postoperative chest drainage and the requirement for blood products, revealed that levosimendan did not increase postoperative bleeding risk. More studies with a larger sample size are needed to address a more reliable conclusion due to study limitations.


Assuntos
Cardiotônicos/administração & dosagem , Hemorragia Pós-Operatória/epidemiologia , Simendana/administração & dosagem , Transfusão de Sangue , Procedimentos Cirúrgicos Cardíacos/métodos , Cardiotônicos/efeitos adversos , Humanos , Assistência Perioperatória/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Risco , Simendana/efeitos adversos
5.
Yi Chuan Xue Bao ; 33(4): 339-44, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16625832

RESUMO

A rice (Oryza sativa L.) mutant with an excessive tiller number, designated ext-M1B, was found in the F2 progenies generated from the cross between M1B and GMS-1 (a genetic male sterile), whose number of tillers was 121. The excessive tillering mutant also resulted in significant changes in plant height, flag leaf, stem, filled grains per panicle, and productive panicles per plant. The inbreeding progenies of ext-M1B exhibited the same mutant phenotype. The crosses from ext-M1B/M1B, M1B/ext-M1B, 2480B/ext-M1B, D62B/ext-M1B, G46B/ext-M1B, and G683B/ext-M1B expressed normal tillering in F1, and segregated into two different phenotypes of normal tillering type and excessive tillering type in a ratio of 3:1 in F2. Inheritance analysis indicated that the excessive tillering character was controlled by a single recessive nucleic gene. By BSA (bulked segregants analysis) and microsatellite makers with the F2 population of 2480B/ext-M1B as the mapping population, RM197, RM584, and RM225, all of which were located on the short arm of rice chromosome 6, were identified to be linked with the excessive tillering gene with genetic distance of 3.8 cM, 5.1 cM, and 5.2 cM, respectively. This gene is probably a new excessive tillering gene in rice and is designated tentatively ext-M1B (t).


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Mutação , Oryza/genética , Regulação da Expressão Gênica de Plantas , Ligação Genética , Oryza/anatomia & histologia , Fenótipo , Componentes Aéreos da Planta/anatomia & histologia , Locos de Características Quantitativas
6.
Yi Chuan Xue Bao ; 33(5): 449-57, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16722340

RESUMO

A genetic linkage map comprising 148 SSR markers loci was constructed using an F2 population consisting of 90 lines derived from a sub-specific cross between a japonica variety Nipponbare and an indica variety Guangluai-4. The F2 population showed high significantly distorted segregations. Among these SSR markers, 49 markers(33.11%) showed the genetics distortion(P<0.05). Of them, 36 markers deviated toward male parent indica GuangLuAi-4 and 13 markers toward heterozygote, but none toward the female parent Nipponbare. It was found that the segregation distortion might be caused by gametophyte and zygote. Since most gametophyte loci and sterility loci were mapped in segregation distortion regions, it indicated that the segregation distortion may be caused by these gametophyte loci and sterility loci. Finally, this research also analyzed the skewed segregation of some markers, which had not been mapped on chromosome.


Assuntos
Biomarcadores/análise , Identidade de Gênero , Genoma de Planta , Repetições de Microssatélites/genética , Oryza/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , População/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA