Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 132, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302871

RESUMO

BACKGROUND: The U-box gene family encodes E3 ubiquitin ligases involved in plant hormone signaling pathways and abiotic stress responses. However, there has yet to be a comprehensive analysis of the U-box gene family in maize (Zea mays L.) and its responses to abiotic stress. RESULTS: In this study, 85 U-box family proteins were identified in maize and were classified into four subfamilies based on phylogenetic analysis. In addition to the conserved U-box domain, we identified additional functional domains, including Pkinase, ARM, KAP and Tyr domains, by analyzing the conserved motifs and gene structures. Chromosomal localization and collinearity analysis revealed that gene duplications may have contributed to the expansion and evolution of the U-box gene family. GO annotation and KEGG pathway enrichment analysis identified a total of 105 GO terms and 21 KEGG pathways that were notably enriched, including ubiquitin-protein transferase activity, ubiquitin conjugating enzyme activity and ubiquitin-mediated proteolysis pathway. Tissue expression analysis showed that some ZmPUB genes were specifically expressed in certain tissues and that this could be due to their functions. In addition, RNA-seq data for maize seedlings under salt stress revealed 16 stress-inducible plant U-box genes, of which 10 genes were upregulated and 6 genes were downregulated. The qRT-PCR results for genes responding to abiotic stress were consistent with the transcriptome analysis. Among them, ZmPUB13, ZmPUB18, ZmPUB19 and ZmPUB68 were upregulated under all three abiotic stress conditions. Subcellular localization analysis showed that ZmPUB19 and ZmPUB59 were located in the nucleus. CONCLUSIONS: Overall, our study provides a comprehensive analysis of the U-box gene family in maize and its responses to abiotic stress, suggesting that U-box genes play an important role in the stress response and providing insights into the regulatory mechanisms underlying the response to abiotic stress in maize.


Assuntos
Ubiquitina-Proteína Ligases , Zea mays , Zea mays/metabolismo , Filogenia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Ubiquitinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Família Multigênica
2.
Cell Commun Signal ; 22(1): 73, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279161

RESUMO

The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.


Assuntos
Macrófagos , NF-kappa B , Glicosilação
3.
Langmuir ; 40(12): 6424-6431, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470109

RESUMO

The self-assembly behaviors of aromatic carboxylic acids are commonly investigated at the liquid/solid interfaces because of their rigid skeletons and both hydrogen-bond donors and receptors. However, self-assemblies of aromatic carboxylic acids with low symmetry and interactions between carboxylic acid and pyridine derivatives are worth exploring. In this work, the self-assembled structural transitions of a kind of low-symmetric aromatic carboxylic acid (H4QDA) are regulated by the coadsorption of two pyridine derivatives (DPE and T4PT) with different symmetry, which are investigated by scanning tunneling microscopy under ambient conditions. For the H4QDA/DPE system, the grid structure appears. For the H4QDA/T4PT system, the coassembled morphologies display an obvious concentration dependence. With the increase of solution concentration of T4PT, three coassembled patterns (network structure, chiral linear structure, and brick-like structure) are observed. Corresponding structural models suggest that the O-H···N hydrogen bonds have great contributions to stabilizing these coassembled structures. Our studies will help to explore the complexity, diversity, and functionality of multiple component systems and are conducive to further understanding the underlying mechanisms in the assembly process.

4.
Langmuir ; 40(3): 1902-1908, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194665

RESUMO

Self-assemblies of two fluorenone-based derivatives (FE and FEC) consisting of a central 2,7-diphenyl-9-fluorenone polar moiety but differing in the flexible terminal groups were investigated by scanning tunneling microscopy (STM) at the 1-octanoic acid/HOPG interface under different concentrations and density functional theory calculation (DFT). STM results reveal a concentration-dependent polymorphic self-assembly behavior for FE, but without the presence of co-adsorbed solvents. As the concentration decreases, the dimer, bracket-like, and ribbon-like self-assembled structures were observed. On the contrary, FEC molecules assemble into only a type of oval-shaped morphology by the intermolecular N···H-O hydrogen bonds with the solvent molecules. Combined with DFT calculations, it can be deduced that the intermolecular van der Waals forces, dipole-dipole interactions, and hydrogen bonding are the main driving forces to stabilize the molecular packing of fluorenone-based polycatenars with strong polarity. Our work is of significance at the molecular level to further clarify the intermolecular interactions and conformational effects on the formation of molecular packing structures with liquid crystal property.

5.
Langmuir ; 39(23): 8314-8322, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37253024

RESUMO

Halogen bonding (XB) is of great importance in fabricating a two-dimensional (2D) self-assembly for its adaptive directionality. However, the XBs involving fluorine (F) have barely been studied due to the absence of an σ-hole on F. Here, 2D self-assemblies of a F-substituted 4,7-bis(5-bromo-4-dodecylthiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (BTZ-BrF) molecule on graphite were investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM experiments revealed that the 2D patterns of BTZ-BrF had a clear solvent and concentration dependence, showing a frame-like pattern in aliphatic acid and aliphatic hydrocarbon solvents at high concentrations. At lower concentrations, a bamboo-like and a wave-like pattern were observed in aliphatic acid, whereas small frame-like and large ladder-like domains at high solution concentrations in aliphatic hydrocarbon were observed. As the concentration further decreased, two linear patterns were observed. DFT calculations suggested that the hetero-XBs of F···Br, F···S, Br···S, and Br···N, the homo-XBs of type-II Br···Br, and the S···S interactions synergistically directed and stabilized the polymorphic 2D architectures. This understanding of intermolecular XBs during the molecular assembly at the molecular level may shed light on the ongoing efforts of regulating nanostructures of multifunctional organics.

6.
Langmuir ; 38(5): 1757-1765, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35084866

RESUMO

The precise control of two-dimensional supramolecular co-assemblies presents a research topic related to advance nanotechnology. Here, we report a scanning tunneling microscopy (STM) study of the mixture behavior of three fluorenone derivatives at the liquid-solid interface. The target molecule is F-C12C13 whose structure bears asymmetrical alkyls, whereas the regulating molecules, either F-C12C12 or F-C13C13, are structurally symmetric. By STM imaging of systematic mixtures with various volumes among the sample solutions, we found that the mixing ratio mainly determined the binary outcomes. Compared with F-C12C12, F-C13C13 shows a stronger ability to dominate the patterning, explained by the larger binding and adsorption energies calculated by the force field simulations. Moreover, the odd-even effect exists in the system. Overall, we acquired knowledge about the regulating ability of bi-component supramolecular assembling, especially for structurally asymmetric molecular systems.

7.
Langmuir ; 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35609242

RESUMO

Bithiophenyl-based diaminotriazine derivatives (2TDT-n, n = 10, 12, 16, and 18) with different chain lengths display colhex/p6mm mesophases. Their supramolecular self-assembled mechanism is investigated using scanning tunneling microscopy (STM) at the 1-octanoic acid/graphite interface at various concentrations. The chain length effect on the two-dimensional adlayers is observed in this system, and 2TDT-n molecules show a structural phase transition from the four-leaf arrangement to the two-row linear nanostructure accompanied by the emergence of molecular isomerization with the increase of the side-chain length. The self-assembled structure of 2TDT-10 is composed of a four-leaf pattern with uniform s-cis conformers. In 2TDT-12, three kinds of nanostructures (bamboo-like, two-row linear pattern-I, and flower-like) are observed. These nanostructures are randomly constituted by cis and trans conformers, and the ratios of the s-cis conformer in three kinds of patterns are 55.7, 42.3, and 62.5%, respectively. Furthermore, when n = 16 and 18, the ratio of the s-cis conformer further decreases to 19.0 and 4.3%, respectively. Those molecules mainly form linear nanostructures consisting of s-trans conformers. Therefore, it is reasonable to conclude that the side-chain length has a great effect on the self-assembled patterns and the molecular conformation of bithiophenyl-based diaminotriazine derivatives. Density functional theory calculations are applied to optimize molecular conformers and assess their single-point energies, showing that the s-cis conformation has higher energy than the s-trans conformer. We speculate that the ratio of two conformers in nanostructures might be similar to that of the liquid crystalline phase.

8.
Phys Chem Chem Phys ; 24(2): 697-703, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932052

RESUMO

The rational synthesis of thiophene-based cross-coupled polymers on surfaces has been attracting more attention recently. Here, we report the stepwise activation of 5,5'-(2,3-difluoro-1,4-phenylene)bis(2-bromothiophene) as a precursor to synthesize thiophene-based polymeric ribbons on the Au(111) surface. Scanning tunneling microscopy studies showed that the precursor adopted different conformations in the self-assembled structure, organometallic species, and covalent polymers. On annealing the sample at a relatively low temperature (150 °C), the conversion of the organometallic structure into a covalent product with straight lines was observed, in which the Br adatoms arranged between the neighboring chains. On further annealing the sample at 270 °C, the detached Br adatoms played a key role in promoting the C-H bond activation. The cross-linked polymer was achieved by a combination of Ullmann and dehydrogenative coupling. When the annealing temperature was up to 390 °C, the C-F bond activation was triggered, which led to the formation of polymeric ribbons resulting from the cyclodehydrogenation of the fluorinated polymer. This study further supplements the reaction mechanism of thiophene-based dehalogenative, dehydrogenative and defluorinative coupling, and provides us a rational way for synthesizing cross-linked functional materials.

9.
J Cell Mol Med ; 24(20): 11874-11882, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32869942

RESUMO

The pathophysiology of polycystic ovary syndrome (PCOS) is characterized by granulosa cell (GC) dysfunction. m6 A modification affects GC function in patients with premature ovarian insufficiency (POI), but the role of m6 A modification in PCOS is unknown. The purpose of the prospective comparative study was to analyse the m6 A profile of the luteinized GCs from normovulatory women and non-obese PCOS patients following controlled ovarian hyperstimulation. RNA m6 A methylation levels were measured by m6 A quantification assay in the luteinized GCs of the controls and PCOS patients. Then, m6 A profiles were analysed by methylated RNA immunoprecipitation sequencing (MeRIP-seq). We reported that the m6 A level was increased in the luteinized GCs of PCOS patients. Comparative analysis revealed differences between the m6 A profiles from the luteinized GC of the controls and PCOS patients. We identified FOXO3 mRNA with reduced m6 A modification in the luteinized GCs of PCOS patients. Selectively knocking down m6 A methyltransferases or demethylases altered expression of FOXO3 in the luteinized GCs from the controls, but did not in PCOS patients. These suggested an absence of m6 A-mediated transcription of FOXO3 in the luteinized GCs of PCOS patients. Furthermore, we demonstrated that the involvement of m6 A in the stability of the FOXO3 mRNA that is regulated via a putative methylation site in the 3'-UTR only in the luteinized GCs of the controls. In summary, our findings showed that altered m6 A modification was involved in up-regulated expression of FOXO3 mRNA in the luteinized GCs from non-obese PCOS patients following controlled ovarian hyperstimulation.


Assuntos
Adenosina/análogos & derivados , Proteína Forkhead Box O3/genética , Células da Granulosa/metabolismo , Luteinização/genética , Síndrome do Ovário Policístico/genética , Regulação para Cima/genética , Adenosina/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Proteína Forkhead Box O3/metabolismo , Células da Granulosa/patologia , Humanos , Síndrome do Ovário Policístico/patologia , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Phys Chem Chem Phys ; 22(3): 1437-1443, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31859319

RESUMO

Recent research studies have shown that the halogenated benzo[1,2-b:4,5-b']dithiophene (DTBDT) unit as a polymer donor exhibits high charge carrier mobility due to the well-ordered molecular packing and high crystallinity, which is meaningful for achieving highly efficient organic solar cells (OSCs). However, it is difficult to acquire the accurate packing information of polymer materials. Herein, we investigated the self-assembled behaviors of two DTBDT derivatives, 4,8-bis(4-octadecylthiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (H-DTBDT) and 4,8-bis(5-bromo-4-octadecylthiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (Br-DTBDT), to elucidate the effect of introducing a bromine atom on molecular packing structures by STM at the 1-phenyloctane/HOPG interface. It is observed that the H-DTBDT molecules exhibit a random arrangement along each lamella, while the Br-DTBDT molecules self-assemble into a highly ordered lamellar structure. Density functional theory (DFT) analysis combined with the topological properties of the electron density at the bond critical points revealed that the existence of weak intermolecular interactions of BrS facilitates the regular packing motif of Br-DTBDT molecules. The results helped us to understand that the BrS bond generally acted as the auxiliary force and can play the primary role in the construction of supramolecular nanostructures.

11.
Biotechnol Lett ; 42(1): 135-142, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31734772

RESUMO

OBJECTIVES: To characterize a glycosyltransferase (UGT74AN3) from Catharanthus roseus and investigate its specificity toward cardiotonic steroids and phenolic compounds. RESULTS: UGT74AN3, a novel permissive GT from C. roseus, displayed average high conversion rate (> 90%) toward eight structurally different cardiotonic steroids. Among them, resibufogenin, digitoxigenin, and uzarigenin gave 100% yield. Based on LC-MS, 1H-NMR and 13C-NMR analysis, structure elucidation of eight glycosides was consistent with 3-O-ß-D-glucosides. We further confirmed UGT74AN3 was permissive enough to glycosylate curcumin, resveratrol, and phloretin. The cDNA sequence of UGT74AN3 contained an ORF of 1,425 nucleotides encoding 474 amino acids. UGT74AN3 performed the maximum catalytic activity at 40 °C, pH 8.0, and was divalent cation-independent. Km values of UGT74AN3 toward resibufogenin, digitoxigenin, and uzarigenin were 7.0 µM, 12.3 µM, and 17.4 µM, respectively. CONCLUSIONS: UGT74AN3, a glycosyltransferase from a noncardenolide-producing plant, displayed catalytic efficiency toward cardiotonic steroids and phenolic compounds, which would make it feasible for glycosylation of bioactive molecules.


Assuntos
Antiarrítmicos/metabolismo , Glicosídeos Cardíacos/metabolismo , Catharanthus/enzimologia , Glicosiltransferases/metabolismo , Fenóis/metabolismo , Biotransformação , Catharanthus/genética , Cromatografia Líquida , Clonagem Molecular , Inibidores Enzimáticos , Estabilidade Enzimática , Glicosilação , Glicosiltransferases/genética , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Especificidade por Substrato , Temperatura
12.
Phys Chem Chem Phys ; 20(25): 17367-17379, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905343

RESUMO

Fabricating complex nano-networks on solid substrates is a research area that has attracted much attention in the field of molecular self-assembly. By designing a fluorenone derivative of 2-heptyloxy-7-pentadecyloxy-9-fluorenone (HPF), we obtained a surface-confined system that presented diverse nanostructures. The assembled networks for HPF were highly dependent on the solvent and concentration. At the liquid/solid interface, chiral tetramer-S, hexamer-S, and tetramer-linear structures as well as achiral irregular-linear and random structures were recorded. On the dry surface, we observed chiral octamer-S and achiral alternate configurations. During the self-assembly process, the short and long alkyl chains of HPF showed selective identification, which contributed to the formation of S-like or anti-S-like tetramers, hexamers and octamers, resulting in chiral structures. The nanopatterns were stabilized under the driving forces of dipolar interactions, hydrogen bonds and van der Waals interactions. Moreover, we performed forcefield calculations in order to further understand the underlying mechanisms from the viewpoints of their force strengths and binding energies. In general, the present work provides a significant impetus to induce polymorphous structures, and we believe that it will promote the study of chirality and achirality in the field of molecular self-assembly.

13.
Phys Chem Chem Phys ; 20(16): 11160-11173, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29629458

RESUMO

Owing to a wide range of applications within the areas such as chiral sensors, enantiomeric resolution, and asymmetric catalysis, understanding chiral adsorption phenomena at the interface is thereby of great importance. In particular, the role of multiple hydrogen bonds in inducing chiral diversiform morphologies has never been systematically investigated. Herein, by delicate control of the volume ratio of 1-octanoic acid and 1-octanol as the mixed solvent, a series of self-assembled nanostructures of 2-hydroxyl-7-pentadecyloxy-fluorenone (HPF) were sequentially fabricated, including the achiral densely-packed pattern, the chiral "6-2" pattern, the chiral alternate pattern, and the chiral double-rosette pattern. Eventually, those patterns would evolve into an achiral and thermodynamically favored zigzag pattern. Based on DFT calculations, we demonstrate that the stabilities of diversiform morphologies originate from different hydrogen bonding and molecular packing densities. In addition, quantum theory of atoms in molecule (QTAIM) analysis is further applied to interpret the nature of these hydrogen bonds.

14.
Planta ; 245(3): 507-521, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888361

RESUMO

MAIN CONCLUSION: The attachment of aerial roots of Syngonium podophyllum involves a multi-step process adjusted by multi-scale structures. Helical-crack root hairs are first found in the attachment system, representing specialized structures for surface anchorage. The morphological variability of attachment organs reflects diverse climbing strategies. One such anchoring mode in clinging-climbers involves the time-dependent interaction between roots and the support: By naturally occurring adhesive roots with root hairs, the plant can ascend on supports of any shape and size. As a typical root-climber, Syngonium podophyllum develops elongate aerial roots at nodes. Here, we studied its attachment behavior from the external morphology to the internal structure in detail. Through SEM and LM observation on several root-substrate interfaces, we suggested that the attachment of aerial roots was mediated by a multi-step process, in which root hairs played significant roles in releasing mucilaginous substance and securing the durable anchorage. We summarized all the types of shape changes of root hairs with particular focus on the abnormal transition from a tube to a helical-crack ribbon. We demonstrated our understanding with respect to the formation of the helical-crack root hairs, based on the structural evidence of cellulose microfibrils orientation on the cell wall lamellae. The helical-crack root hairs serving as energy-dissipating units retard the failure of adhesion under high winds and loads.


Assuntos
Araceae/anatomia & histologia , Araceae/ultraestrutura , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/ultraestrutura , Casca de Planta/ultraestrutura
15.
Phys Chem Chem Phys ; 19(29): 19205-19216, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28702598

RESUMO

Structural diversity obtained through two-dimensional molecular self-assembly induced by the chain length effect has gained immense attention, not only because of its significance in crystal engineering but also for its potential application in nanoscience and nanotechnology. Three kinds of fluorenone derivative, named F-C7C7, F-C14C7, and F-C14C14, were synthesized and used for systematic exploration of their crystalline difference. At first, scanning electron microscopy and X-ray powder diffraction were performed to investigate their differences in morphology and three-dimensional crystal structure. Then scanning tunneling microscopy experiments were conducted to compare the self-assembled monolayers. Moreover, different solvents were used to repeatedly investigate the occurrence of structural diversity. F-C7C7 could not self-assemble into a stable monolayer on the graphite surface under ambient conditions due to its weak molecule-substrate interaction. F-C14C7 was observed to self-assemble into twist, plier-like, octamer-curve, and random structures in 1-octanoic acid, 1-phenyloctane, n-tetradecane, and dichloromethane, respectively. However, when the same solvents were used and at similar concentrations, the F-C14C14 molecules were arranged into interval, mixed, linear, and plier-like configurations. These self-assembled nanopatterns formed under the driving forces of dipole-dipole interactions, hydrogen bonds, and chain-chain, molecule-substrate, and molecule-solvent van der Waals interactions. Furthermore, from the viewpoint of thermal analysis, differential scanning calorimetry, as well as polarized optical microscopy, was performed to further elucidate the difference between these three compounds in the solid and liquid crystal states. The present system is believed to provide understanding of how the chain length effect induces different crystalline properties, and to open up the possibility of fabricating diverse self-assembled networks for crystal engineering.

16.
Phys Chem Chem Phys ; 19(46): 31113-31120, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29138773

RESUMO

Two-dimensional supramolecular assemblies of a series of 2,7-bis(10-n-alkoxycarbonyl-decyloxy)-9-fluorenone derivatives (BAF-Cn, n = 1, 3-6) consisting of polar fluorenone moieties and ester alkoxy chains were investigated by scanning tunneling microscopy on highly oriented pyrolytic graphite surfaces. The chain-length effect was observed in the self-assembly of BAF-Cn. Self-assembly of BAF-C1 was composed of a linear I pattern, where the side chains adopted a fully interdigitated arrangement. As the length of side chains increased, the coexistence of a linear I pattern and a cyclic pattern for the self-assembly of BAF-C3 was observed. Upon increasing the length of the alkoxy chain even further (n = 4-6), another linear II structure was observed in the BAF-Cn monolayer, in which the side chains in adjacent rows were arranged in a tail-to-tail configuration. It is reasonable to conclude that not only the van der Waals forces but also the dipole-dipole interactions from both the fluorenone cores and the ester alkoxy chains play critical roles in the self-assemblies of BAF-Cn. Our work provides detailed insights into the effect of intermolecular dipole-dipole and van der Waals interactions on the monolayer morphology of fluorenone derivatives.

17.
Phys Chem Chem Phys ; 19(4): 3143-3150, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28083588

RESUMO

We design a bifunctional molecule (5-bromo-2-hexadecyloxy-benzoic acid, 5-BHBA) with a bromine atom and a carboxyl group and its two-dimensional self-assembly is experimentally and theoretically investigated by using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The supramolecular self-organization of 5-BHBA in two different solvents (1-octanoic acid and n-hexadecane) at the liquid-solid interface at different solution concentrations is obviously different due to the cooperative and competitive intermolecular halogen and hydrogen bonds. Three kinds of nanoarchitectures composed of dimers, trimers and tetramers are formed at the 1-octanoic acid/graphite interface based on -COOHHOOC-, triangular C[double bond, length as m-dash]OBrH-C, -BrO(H), BrBr, and OH interactions. Furthermore, by using n-hexadecane as the solvent, two kinds of self-assembled linear patterns can be observed due to the coadsorption, in which the dimers are formed by intermolecular -COOHHOOC- hydrogen bonds. The molecule-solvent and solvent-solvent van der Waals force and intermolecular hydrogen bonds dominate the formation of coadsorbed patterns. We propose that the cooperative and competitive halogen and hydrogen bonds are related to the polarity of the solvent and the type of molecule-solvent interaction. The intermolecular binding energy of different dimers and their stability are supported by theoretical calculations. The result provides a new and innovative insight to induce the 2D self-assembled nanostructures by halogen and hydrogen bonds at the liquid-solid interface.

18.
Phys Chem Chem Phys ; 18(10): 7208-15, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26890677

RESUMO

The effects of the position and number of bromine substituents on the self-assembled patterns of phenanthrene derivatives by changing multiple weak intermolecular interactions were investigated at the 1-octanoic acid/graphite interface at different concentrations by scanning tunneling microscopy. Two Br substituted DBHP molecules (2,7-DBHP, 3,6-DBHP) and BHP without a Br group formed a linear lamellar pattern by the van der Waals interactions between the alkoxyl chains in each lamella at high concentrations, which forces the phenanthrene derivatives to self-organize in a π-π stacked edge-on conformation. On decreasing the solution concentration, owing to the molecule-molecule van der Waals force and BrBr halogen bonds or the molecule-solvent cooperative BrO (C[double bond, length as m-dash]O) hydrogen and BrHO-hydrogen bonds, 2,7-DBHP molecules were found to form two kinds of network structures, whereas 3,6-DBHP molecules formed only a zigzag pattern due to the intermolecular BrBr van der Waals type interactions. One bromine substituted phenanthrene derivative (3-DBHP) formed a dislocated linear pattern by two C-HBr hydrogen bonds in each dimer. These observations revealed that an important modification of the position and number of halogen substituents might dramatically change the self-assembly behaviors by different intermolecular interactions including BrBr and BrO halogen bonding, BrBr van der Waals type interactions, and HBr hydrogen bonding. DFT calculations were explored to unravel how slightly tuning the molecular structure defines the geometry of a 2D self-assembled nanoarchitecture through the different elementary structural units having BrBr and BrH interactions.

19.
Phys Chem Chem Phys ; 18(1): 624-34, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26628411

RESUMO

Investigating and regulating the self-assembly structure is of great importance in 2D crystal engineering and it is also gaining significant interest in surface studies. In this work, we systematically explored the variation of self-assembled patterns induced by the changeable side chain position. Moreover, molecules with different alkyl chain lengths (n = 15, 16) were also synthesized and probed for the purpose of understanding how an odd/even number of carbon atoms in the peripheral chains can affect the molecular adlayers. Structural isomers of bis-substituted anthraquinone derivatives 1,8-A-2OCn, 2,6-A-2OCn, 1,4-A-2OCn and 1,5-A-2OCn (n = 15, 16) were used and investigated by STM. 1,8-A-2OC16 and 1,8-A-2OC15 molecules adopted Z-like I and Linear I structures, respectively. 2,6-A-2OC16 and 2,6-A-2OC15 molecules were severally arranged in Linear II and Linear III configurations. 1,4-A-2OCn (n = 15, 16) molecules were staggered in a Z-like II fashion and 1,5-A-2OCn (n = 15, 16) molecules displayed a Linear IV nanostructure. Therefore, we arrive at a conclusion that self-assembly structures of anthraquinone isomers are chain-position-dependent, and designing isomeric compounds can be taken into consideration in regulating assembled structures. Besides, 2D nanopatterns of 1,8-A-2OCn and 2,6-A-2OCn can be regulated by the odd/even property of the side chains, but this is not the case for 1,4-A-2OCn and 1,5-A-2OCn, ascribed to the difference in driving forces for them. It is believed that the results are of significance to the alkyl chain position induced assembly configurations and surface research studies of structural isomers.

20.
Phys Chem Chem Phys ; 18(19): 13164-8, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27125776

RESUMO

Chiral structures are recorded, with the adsorption of an achiral anthraquinone derivative and co-adsorption of achiral solvent on an achiral surface. Dimer, trimer and tetramer aggregations are observed while only the tetramer-dimer combination constructs the whole monolayer, and the formation mechanism is explained from the thermodynamic and kinetic viewpoints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA